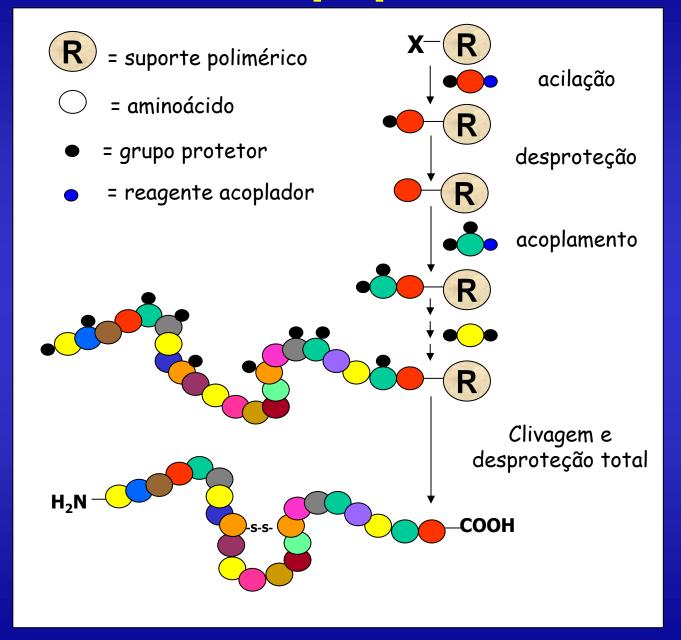


UNIVERSIDADE FEDERAL DE SÃO PAULO DEPARTAMENTO DE BIOFÍSICA

Peptídeos e polímeros: exemplos de interação ciências básica-aplicada

CLÓVIS R. NAKAIE

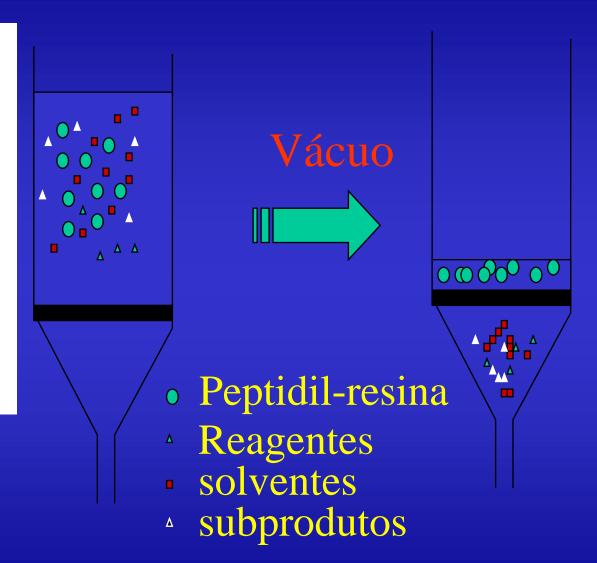

Representação da formação de uma ligação peptídica e estrutura de um pentapeptídeo

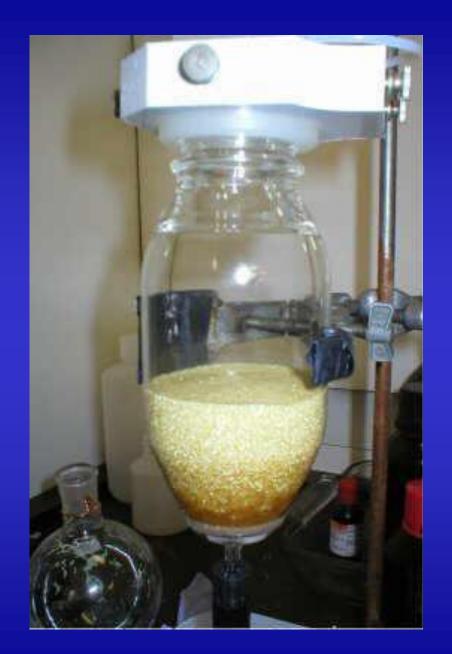
Peptídeos Biologicamente Ativos

- 1- Combinação de aproximadamente 50 aminoácidos (aa).
- 2- Alta atividade biológica (ativo em doses de picograma)
- 3- <u>Isolamento</u>: Baixas concentrações nas fontes naturais <u>Síntese química</u>: Complexa e cara.

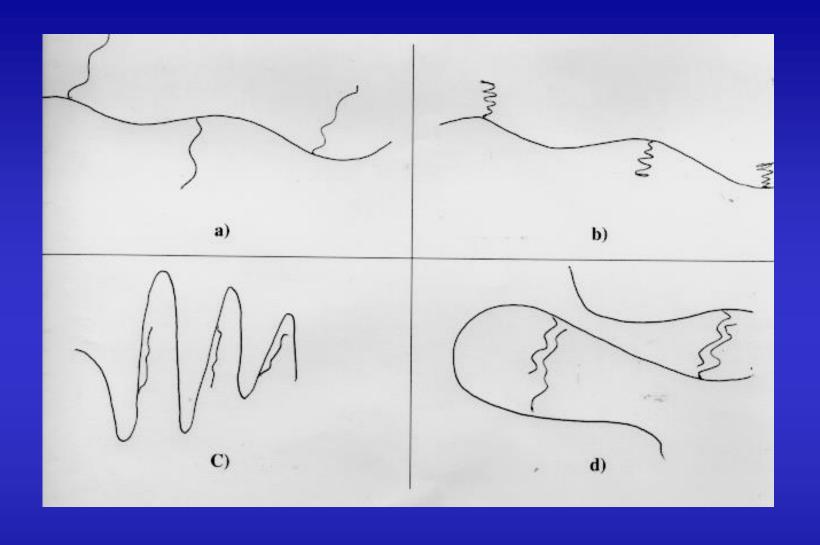
Peptídeo	Processo biológico/doença
1. Tireoliberina TRH (n=3 aa)	Doença da tiróide
2. Angiotensina II (n=8 aa)	Hipertensão arterial
3. Bradicinina (n=9 aa)	Hipotensão, inflamação, asma
4.Ocitocina (n=9 aa)	Parto e aleitamento
5. Desmopressina (n=9 aa)	Diabetes insipidus
6. MSH (n=13 aa)	Coloração da pele
7. Gastrina (n=17 aa)	Secreção gástrica
8. Leptina (n=49 aa)	Obesidade
9. GHRF (n=44 aa)	Crescimento
10. Insulina (n=51 aa)	Diabetes mellitus
11. Inhibidor de aspartil-protease (n=3-6 aa)	AIDS (coquetel)

Síntese peptídica


Metodologia da SPFS


Experimento pioneiro:

J. Am. Chem. Soc., 1963, 85, 2149.
>4800 citações!

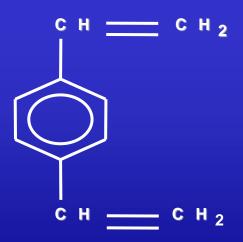


R. Bruce Merrifield Prêmio Nobel, 1984

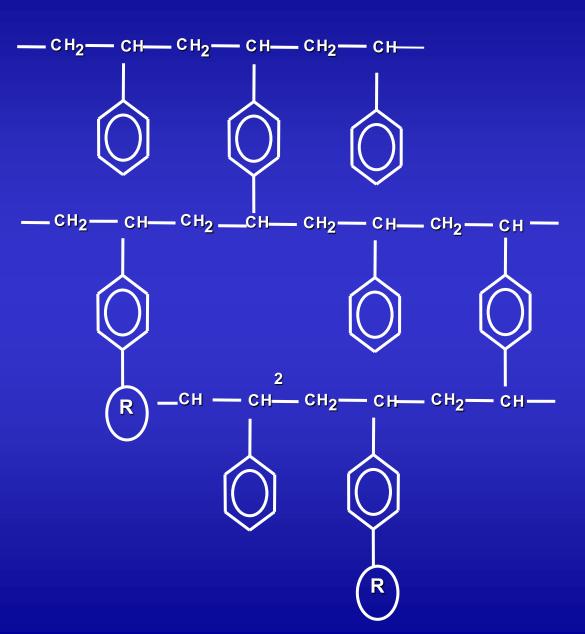
Peptide-polymer structures

<u>Table:</u> Calculated Product Yields of Peptides of Various Chain Lengths for Different Constant Yields per Cycle

	Amino acid Number of		Yield per step			
Polypeptide, protein	residues	cycles	95%	98%	99%	99,9%
A '	0	7	60.0	0.6.0	02.2	00.2
Angiotensin II	8	7	69,8	86,8	93,2	99,3
Oxytocin, vasopressin, bradykinin	9	8	66,3	85,1	92,3	99,2
Antamanide, gramicidin	10	9	63,0	83,4	91,4	99,1
α-Melanotropin	13	12	54,0	78,5	88,6	98,8
Gramicidin A	15	14	48,8	75,4	86,9	98,6
Insulin A-Chain	21	20	35,8	66,8	81,8	98,0
Insulin B-Chain	30	29	22,6	55,7	74,7	97,1
Staphylococcal nuclease-P	42	41	12,2	43,7	66,2	96,0
Ferredoxin	55	54	6,3	33,6	58,1	94,7
Bovine trypsin inhibitor	58	57	5,4	31,6	56,4	94,5
Cytochrome c	104	103	0,5	12,4	35,5	90,2
Ribonuclease A	124	123	0,2	8,3	29,1	88,4
Human growth hormone	190	189	0,006	2,2	15	82,8


Características da Resina Ideal

- a) Conter sítios ativos onde deve ocorrer a ligação do aminoácido carboxiterminal, através de ligação estável covalente;
- b) Possuir estrutura que possibilite a rápida difusão dos reagentes até os sítios de reação e que facilite a remoção de subprodutos, através de lavagens por filtração;
- c) Não introduzir impedimentos estéricos significativos nas reações químicas que ocorrem em seu interior;
- d) Não apresentar nenhum outro sítio reativo que possa induzir reações ou interações indesejadas;
- e) Ser insolúvel em todos os solventes utilizados;
- f) Apresentar completa estabilidade química e física.


A resina mais tradicional: PS-DVB

Estireno

Divinilbenzeno

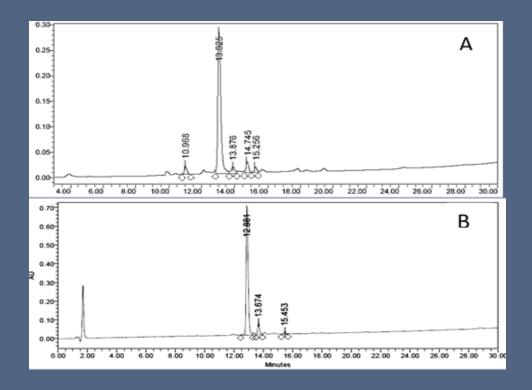
Síntese do Copolímero de Estireno e Diacrilato de Tetraetilenoglicol (EDTG)

RESULTADOS

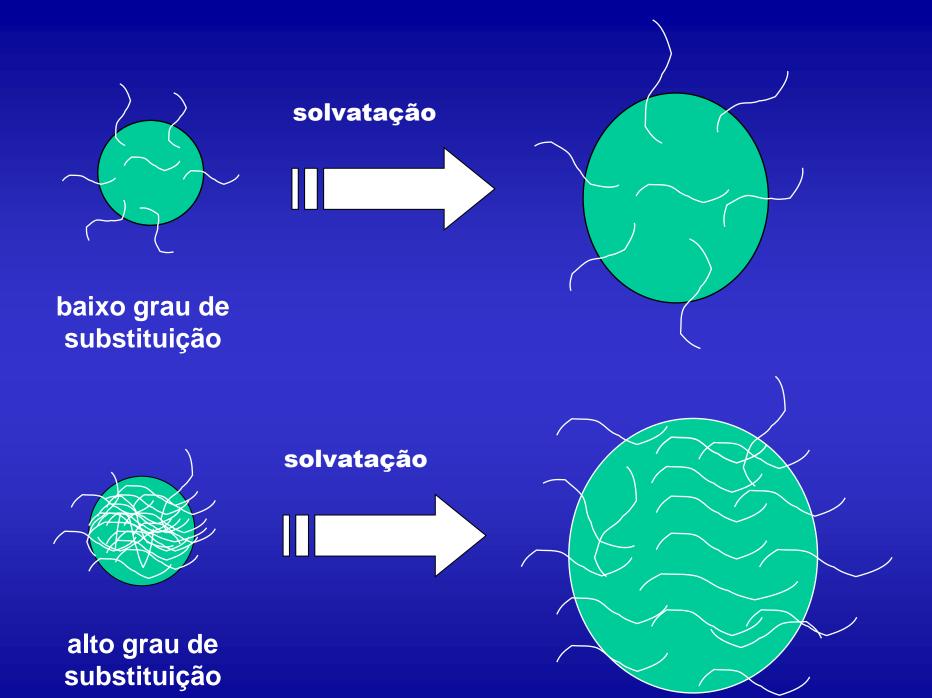
1. Síntese de Resinas

- •BAR;
- •MBAR;
- •BUBAR.

Redução de Leuckart
$$\downarrow$$
 $HCO_2NH_4:H_2CO_2$


Hidrólise Ácida HCI : Ác. Propiônico

$$\mathbb{R} \xrightarrow{\mathsf{H}} \mathbb{C}^{\mathsf{T}} - \mathsf{X}$$


$$\mathsf{NH_3}^+ \mathsf{CI}^-$$

$$X = H(BAR)$$

$$X = CH_3(MBAR)$$
 $X = H_3C-CH_2-CH_2-CH_3(BUBAR)$

Perfis cromatográficos em HPLC dos peptídeos-modelo brutos (A) AngII-NH2 e (B) Gly8-AngII-NH2 clivados em HF anidro a 0°C 2 horas, sintetizados na BUBAR.

THEORETICAL YIELD OF SYNTHESIS WITH LOW AND HIGHLY SUBSTITUTED RESINS

Resin (mmol/g)

Weight of peptide (per 1g of starting resin)

MW = 1000 (8 aa)

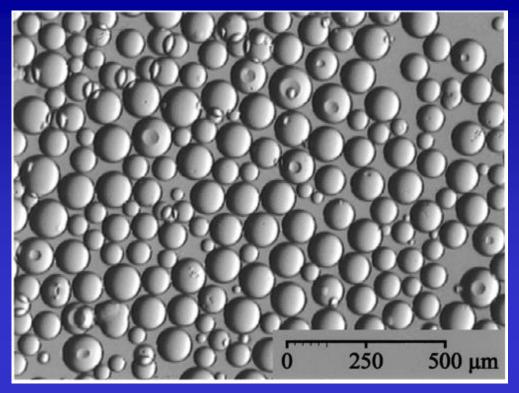
MW = 4000 (35 aa)

 $0.3 \, \text{mmol/g}$

0.3 g (PC = 30%)

1.2 g (PC = 60%)

3.0 mmol/g

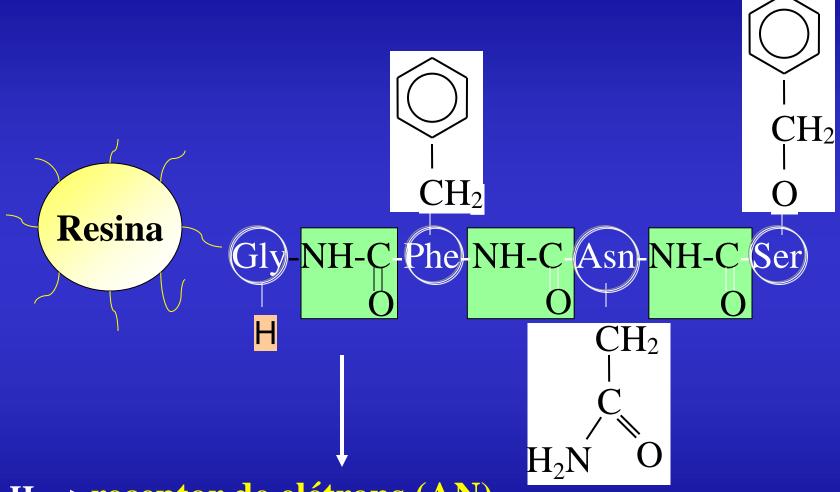

3.0 g (PC = 80%)

12.0 g (PC = 95%)

•PC = peptide content

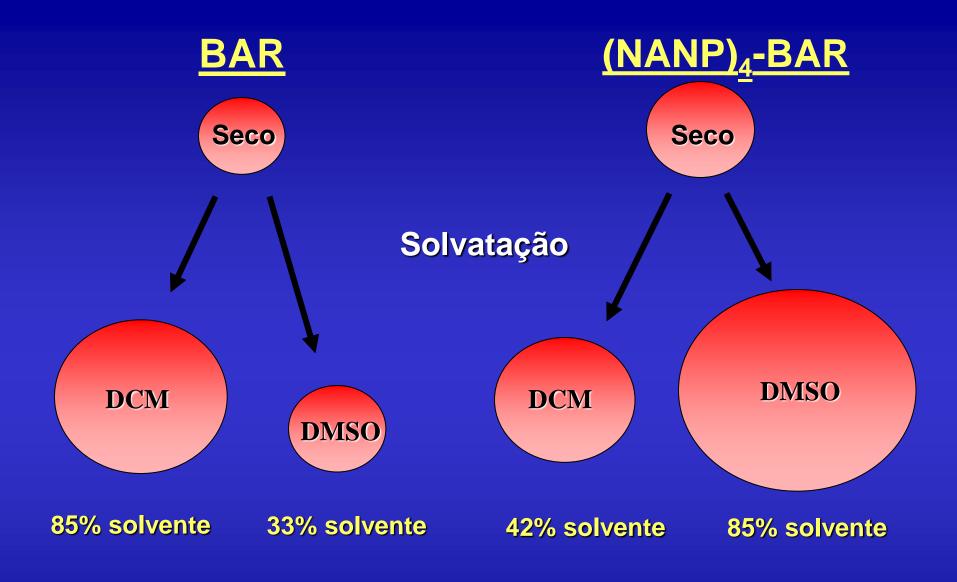
Solvation Studies of Polymers

a) Microscopic Measurement of Bead Sizes



Microscopia óptica dos grãos de resina

Solvente DCM						
Diâm. grãos secos ^a	Diâm. grãos	Volume do	Solvente			
	solvatados ^a	solvente por grão ^b	dentro do grão ^c			
(µm)	(µm)	$(10^5 \mu \text{m}^3)$	(%)			
45	75	1,7	78			
		Diâm. grãos secos ^a Diâm. grãos solvatados ^a (μm) (μm)	Diâm. grãos secos ^a Diâm. grãos Volume do solvatados ^a solvente por grão ^b (μm) (10 ⁵ μm ³)			


^aMédias geométricas; ^bvolume grão solvatado - volume grão seco; ^cporcentagem do volume do grão solvatado ocupado pelo solvente

Peptidil-Resina

N-H → receptor de elétrons (AN)

C=O → doador de elétrons (DN)

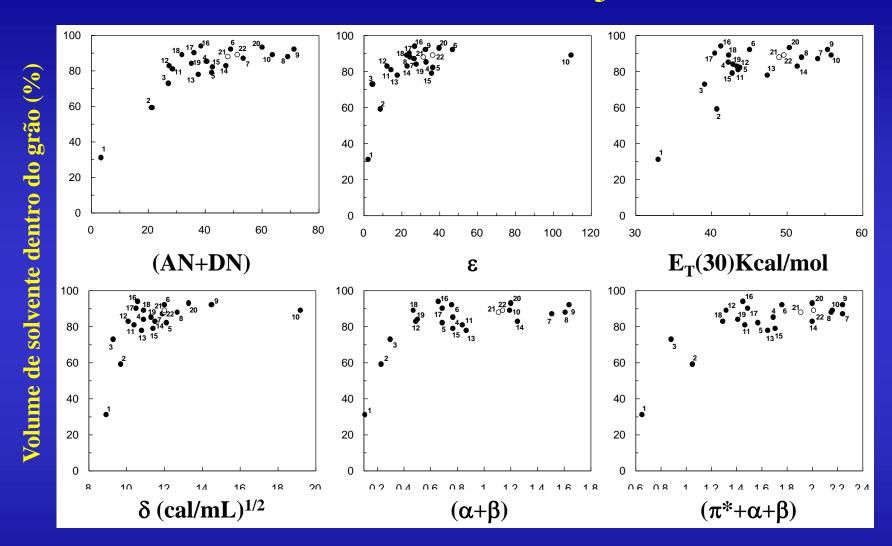
Inchamento da BAR e da (NANP)₄- BAR de 1,4 mmol/g (68% de conteúdo peptídico)

CORRELAÇÃO ENTRE SOLVATAÇÃO DE POLÍMEROS E POLARIDADE DO SOLVENTE

						Resina ^a (% inchamento)			
	Solvente	3	AN	DN	(AN+DN)	1	2	3	4
	T. 1	2.4	2.2	0.1	2.4	07	<i>c</i> 1	26	40
1	Tolueno	2,4	3.3	0.1	3.4	87	64	26	40
2	DCM	8,9	20.4	1.0	21.4	84	79	46	52
3	Clorofórmio	4,7	23.1	4.0 27.3	27.1 40.6	83	83	53	64
4	NMP	33,0	13.3			67	75 70	70	64 57
5	DMF	36,7	16.0 19.3	26.6 29.8	42.6 49.1	70	70	75 76	57
6	DMSO	46,7 26,7	19.3 53.5	29.8 0.0	49.1 53.5	51	71	76	65
7	TFE		33.3 37.1	32.0	55.5 69.1	28	77 52	63	60
8	EtOH	24,3			71.3	19	53	38	40
9	MeOH	32,6	41.3 39.8	30.0 24.0	63.8	17	59	45	41
10	Formamida	109,5	39.8 28.4	0.1	28.5	23 71	61 82	61	46
11	50% TFE/Tolueno	14,6	27.0	0.1	28.3 27.5			62	64
12	20% TFE/DCM	12,5				72	78	70	60 50
13	50% TFE/DCM	17,8 23,1	36.9 46.9	0.5 0.2	37.5 47.4	56 42	80	73 75	58
14	80% TFE/DCM				47.4	42	80	75	65
15	20% DMSO/NMP	35,7	14.5	27.8 24.9		73	71	65	61 55
16	50% DMSO/THF	27,1	13.7		38.6	65	68 75	62	55
17	65% NMP/THF	24,1	11.5	24.8 13.8	36.1	79	75 76	68	66
18	50% DCM/DMF	22,8	18.2		32.0	70	76	66	61
19	50% DCM/DMSO	27,8	19.9 30.3	15.4	35.3 60.2	68	69	68	65
20	50% MeOH/DMSO	39,7	30.3 34.8	29.9 13.3	60.2 48.1	25	66	72	56
21	50% TFE/DMF	31,7 36,7	34.8 36.4	13.3 14.9	51.3	27	69	29	47
22	50% TFE/DMSO	8,3	18.5	6.6	25.1	28 76	70 81	31 60	47 62
23	10% TEA/DCM	8,3 33,3	18.5 14.5	30.0	44.5	76 66	78	69	
24	10% TEA/DMF	33,3 42,3	14.5 17.5	30.0	50.4	47	78 72	69 71	65 64
25	10% TEA/DMSO								
26	20% PIP/DCM	8,3	16.3	8.8 29.3	25.1 42.1	78 73	76	55 66	nd nd
27	20% PIP/DMF	30,5	12.8	29.3 31.8		73	75 71	66 70	nd nd
28	20% PIP/DMSO	38,5	15.4	31.8 14.1	47.2	62 32	71		nd 36
29	Acetonitrila (ACN)	36,0	18.9 12.5	14.1 17.0	33.0 29.5	32 48	65	24 21	36 40
30	Acetona (ACE)	20,7					63		
31	2-Propanol (iPrOH)	18,3	33.5	36.0	69.5	14	46	10	37

^a [(volume solvatado – volume seco) / volume solvatado] x 100 utilizando os seguintes valores para as medidas dos diâmetros dos grãos secos: Resinas: **1**=50 μm **2**=114 μm, **3**=87 μm, **4**=94 μm, nd = não determinado.

Resinas:


- 1. BAR
- 2. PAC-PEG-PS
- $3. (NANP)_3 Nle-BAR$
- 4.VHHQKLVFFAEDV-BAR

(fragmento 12-24 do peptídeo β-amiloicde - 42 aa)

Alguns Parâmetros de Solvente Utilizados

- a) Constante dielétrica (ε);
- b) Parêmetro $E_T(30)$ Dimroth-Reichardt
- c) Parâmetro de Solubilidade Hildebrand (δ);
- d) Parâmetro π* Kamlet-Taft
- e) Parâmetros α e β (capacidade doadora e receptora protônica, respectivamente) Kamlet-Taft
- f) Parâmetros AN e DN (receptor e doador eletrônico, respectivamente) Gutmann.
- g) Parâmetro de polaridade testado : (AN+DN)

Resina BAR-NH₃⁺

Inchamento da resina (1), BAR-NH₃⁺, 2.4 mmol/g em função dos parâmetros de polaridade (AN+DN), ϵ , $E_T(30)$, δ , $(\alpha+\beta)$ e $(\pi^*+\alpha+\beta)$ de solventes.

Escala do solvente (AN+DN).

Solvente	(AN+DN)	Solvente	(AN+DN)
n-Hexano	0.0	N-Metil-pirrolidinona (NMP)	40.6
n-Heptano	0.0	Dimetilacetamida	41.4
Tolueno	3.4	N,N-dimetilformamida (DMF)	42.6
Benzeno	8.3	Dietilacetamida	45.8
Tetracloreto de carbono	8.6	Piridina	47.3
1,1-Dicloroetano	16.2	Dimetilsulfóxido (DMSO)	49.1
1,2-Dicloroetano	16.7	Hexametilfosforamida	49.4
Nitrobenzeno	19.2	Hexametilfosforamida	49.4
Dicloroetilenocarbonato	19.9	1,1,1-Trifluoroetanol (TFE)	53.5
Diclorometano (DCM)	21.4	2-Feniletanol	56.8
Dietiléter	23.1	N-Metilformamida	59.1
Nitrometano	23.2	Dietilamina	59.4
Dioxano	24.6	Álcool benzílico	59.8
Acetato etílico	26.4	Etilamina	60.3
Acetato metílico	27.0	Trietilamina (TEA)	62.4
Clorofórmio	27.1	Formamida	63.8
Benzonitrila	27.4	t-Butanol	65.1
Tetrahidrofurano (THF)	28.0	1-Butanol	65.8
Acetona	29.5	Etanol (EtOH)	69.1
Dimetoxietano	30.2	2-Propanol	69.5
Acetonitrila	33.0	Metanol (MeOH)	71.3
Propileno CO ₃	33.4	Água	72.8
Tributilfosfato	33.6	Ácido acético	72.9
Sulfolano	34.0	Diaminoetano	75.9
Sulfano tetrametileno	34.0	Etilenodiamino	75.9
4-Butirolactona	35.3	Ácido fórmico	102.6
Tetrametiluréia	38.8	Ácido trifluoracético (TFA)	105.0
Trimetilfosfato	39.3	Ácido trifluormetanosulfônico	129.1
Piperidina (PIP)	40.0		

Cilli et al. J.Org.Chem. (1996), 81, 8992

Malavolta et al. Tetrahedron (2002),58, 4383

Oliveira et al. Eur. J. Org. Chem. (2002), 3686

Malavolta e Nakaie.Tetrahedron (2004) 60, 9417

SOLVATION STUDIES OF POLYMERS

b) Electron Paramagnetic Resonance Spectroscopy

Ressonância Paramagnética Eletrônica (RPE)

- <u>Definição</u>: método espectroscópico que detecta compostos que possuem elétron desemparelhado.
- Inúmeros compostos possuem elétrons desemparelhados: ex: radicais livres, íons de transição metálica, etc.
- Compostos com elétrons desemparelhados são geralmente muito instáveis mas participam de processos cruciais como na fotossíntese, oxidações, catálises e reações de polimerização.

ESTUDOS ESPECTROSCÓPICOS

ESPECTRO ELETROMAGNÉTICO

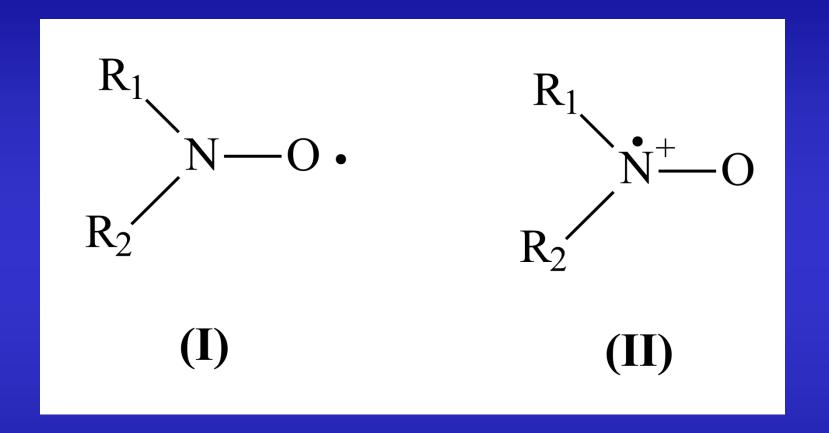
ESTUDOS ESPECTROSCÓPICOS

As técnicas espectroscópicas obtêm informação do sistema estudado analisando a radiação que é transmitida ou espalhada.

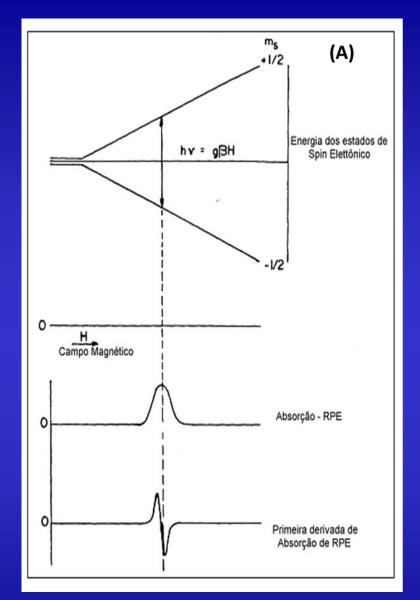
Radiação Eletromagnética

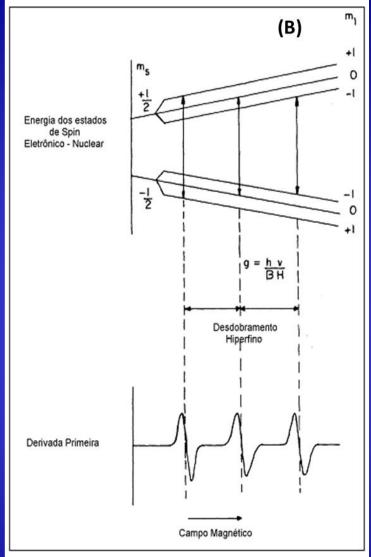
(v) incidente

AMOSTRA

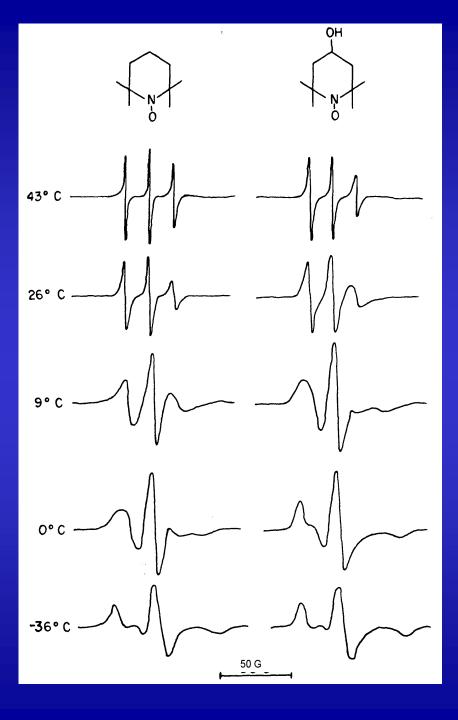

Radiação Espalhada

$$(v)_{espalhada} = (v)_{incidente}$$


- fluorescência
- difração de raios-X
- Raman
- fosforescência


Radiação Transmitida $(v)_{transmitida} = (v)_{incidente}$

- absorção ótica
- NMR, ESR
- CD



Formas canônicas do radical nitróxido

(A) Desdobramento dos níveis do spin eletrônico em presença de um campo magnético; (B) Desdobramento dos níveis de energia do spin eletrônico para um átomo com spin nuclear I=1.

$$(CH_3)_2$$
 $(CH_3)_2$
 $(CH_3)_2$

TOAC

2,2,6,6-tetrametihylpiperidine-1-oxyl-4-amine-4-carboxylic acid

$$(CH_3)_2$$
 $(CH_3)_2$
 $(CH_3)_2$
 $(CH_3)_2$

POAC

2,2,5,5-tetramethylpyrrolidine-1-oxyl-3-amine-4-carboxylic acid

Síntese do Fmoc-TOAC

4-oxo-Tempo (TEMPONA)

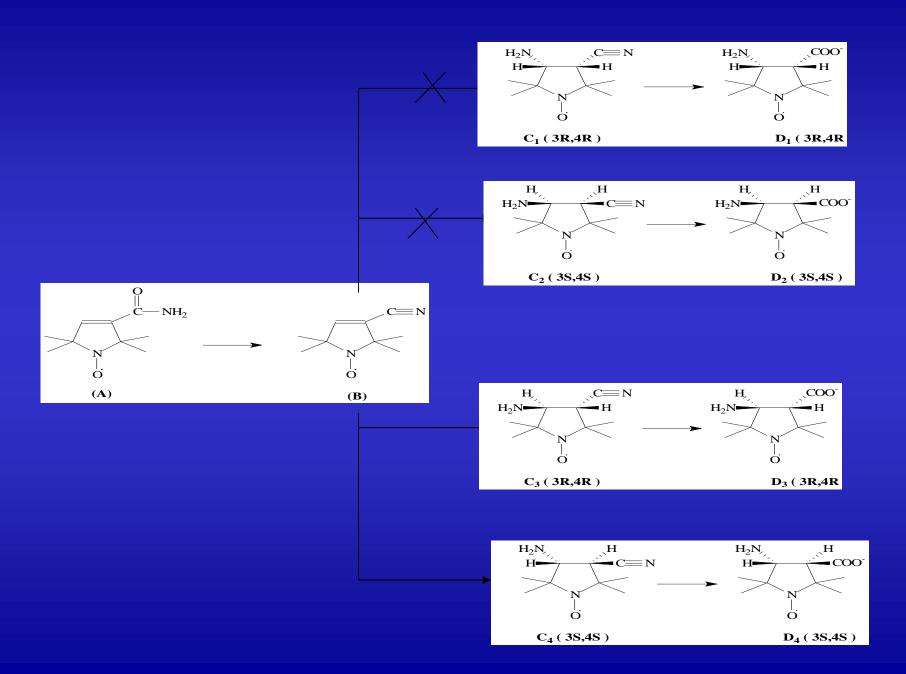
Hidantoína-5,4'-(2',2',6',6'-tetrametil-piperidina-N-óxido (ESPIRO)

$$(CH_3)_2 \xrightarrow{\text{N}} (CH_3)_2 \xrightarrow{\text{COOH}} (CH_3)_2 \xrightarrow{\text{CH}_2 - \text{O} - \text{C}} + \text{IN} \xrightarrow{\text{COOH}} (CH_3)_2 \xrightarrow{\text{N}} (CH_3)_2 \xrightarrow{\text{O}} (CH_3)_2 \xrightarrow{\text{O}}$$

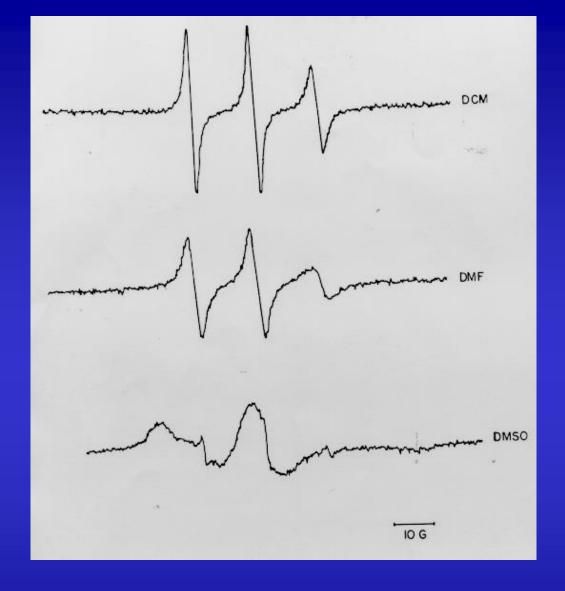
Ácido 2,2,6,6-tetrametilpiperidina-N-óxido 4-amino--4carboxílico (TOAC)

Ácido N^{α} -(9-fluorenilmetiloxicarbonil)-2,2,6,6-tetrametilpi-peridina-N-óxido-4-carboxílico (Fmoc-TOAC)

Síntese do Fmoc-POAC


Chem. Pharm. Bull. (2001) 49, 1027

(I)
$$(CH_3)_2$$
 $(CH_3)_2$ $(CH_3$



- I) 2,2,5,5-tetrametil-3-carbamidopirrolidina-1-oxil
- II) 2,2,55- tetrametil -3-cianopirrolidina-1-oxil
- III) 2,2,5,5 tetrametill -3-ciano-4-aminopirrolidina-1-oxil
- IV) Ácido 2,2,5,5-tetrametillpirrolidina-Novil-3-amino-4-carboxílico
- V) Ácido (9-fluorenilmetoxicarbonil)-2,2,5,5-tetrametilpirrolidina-N-oxil-3amino-4-carboxílico

Síntese do POAC e a sua estereoquímica

Cat.#	Chemical	Size / Pric	e USS
087400		line-3-Carboxylate N-Hydroxysuccinin	mide Ester OXYL-1-
	NHS		
	mw 281.29	10 mg	\$45.00
	C ₁₃ H ₁₇ N ₂ O ₅	100 mg	\$360.00
A hi	ighly amine reactive spin-label.		
087500	(1-0xyl-2.2.5.5-Tetramethyl-[]3-]	Pyrroline-3-Methyl) Methanethiosulfo	nate MTSL
007,500	mw 264 30	10 mg	\$45.00
	C ₁₀ H ₁₈ NO ₃ S ₂	100 mg	\$360.00
A 1-1	Charles to the charles and label	A specific conformational probe of thiol	
its n	ninimal rotational freedom and distance	from the covalent disulfide linkage to the	e macromolecule under
stud	iner, L.J., et al.: Analytical Biochemistry	110 450 (1082)	
Beri	inner, L.J., et al.: Analytical biochemistry	y, 119, 430 (1982)	
			1.70
087505	(1-Oxyl-2,2,5,5-Tetramethyl- 3-l	Pyrroline-3-Methyl) Methanethiosulfo	nate-d15 MTSL-d1
700000	mw 279 48	10 mg	\$650.00
	C10H3D15NO3S2	100 mg	\$5200.00
A th	niol reactive spin label compound used to	probe the conformation and dynamics of	of thiolated proteins.
087510	(1-Oxyl-2.2.5.5-Tetramethyl-03-1	Pyrroline-3-Methyl) Methanethiosulfo	nate-15N-D15
2011/20	MTSL-15N-d15		
	mw 280.49	5 mg	\$650.00
	C ₁₀ H ₃ D ₁₅ NO ₃ S ₂	50 mg	\$5200,00
A th	niol reactive spin label compound used to	probe the conformation and dynamics	of thiolated proteins.
O87600	(1-Oxyl-2,2,5,5-Tetramethylpyrre	oline-3-Yl)carbamidoethyl Methaneth	iosulfonate
	MTS-4-Oxyl		
	mw 321.43	10 mg	\$81.00
	C ₁₂ H ₂₁ N ₂ O ₄ S ₂	100 mg	\$648.00
A h	ighly reactive thiol-specific spin-label. /	A specific conformational probe of thiol	site structure by virtue of
its r	ninimal rotational freedom and distance	from the covalent disulfide linkage to th	e macromolecule under
stud	ly.		
	and a management of the N	Oxyl-4-Amino-4-Carboxylic Acid	TOAC
T30450			\$45.00
. 50450	mw 215.27	10 mg 100 mg	\$360,00
130430		100 mg	\$300,00
.50450	C ₁₀ H ₁₉ N ₂ O ₃		
	C ₁₀ H ₁₉ N ₂ O ₅ table free radical spin label.		i.e.

RPE spectra of Boc-TOAC-BHAR (0.25 mmol/g) in DCM, DMF and DMSO

Volume 70, Number 12

June 10, 2005

© Copyright 2005 by the American Chemical Society

Determination of Site-Site Distance and Site Concentration within Polymer Beads: A Combined Swelling-Electron Paramagnetic Resonance Study

Reinaldo Marchetto,† Eduardo M. Cilli,† Guita N. Jubilut,‡ Shirley Schreier,§ and Clovis R. Nakaie*,‡

Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP, Araraquara, São Paulo 14800-900, Brazil, Department of Biophysics, Universidade Federal de São Paulo, Rua 3 de Maio 100, CEP 04044-020 São Paulo, Brazil, and Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil

clovis.biof@epm.br

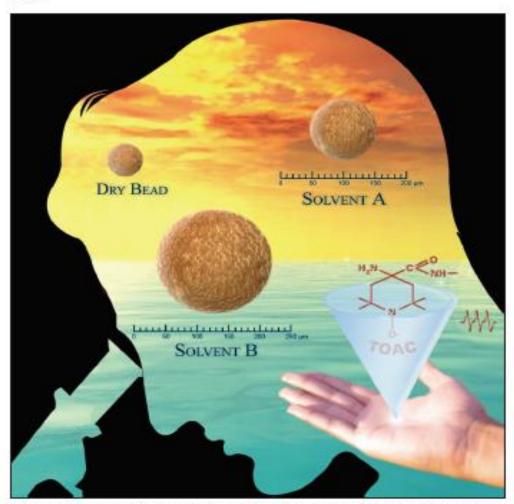
Received September 20, 2004

TABLE 1. Swelling Parameters of Differently Labeled Boc-TOAC-BHAR in DCM

		sample								
	col 1	col 2	col 3	col 4	col 5	col 6	col 7	col 8	col 9	col 10
BHAR ^a (mmol/g)	diam dry bead (µm)	diam swollen bead (µm)	vol solvent/ bead (10 ⁵ µm ³)	vol dry sample/g copol ^b (mL)	wt dry sample/g copol (g)	vol dry sample/g sample (mL)	no. of beads/g sample (10 ⁷)	no. of sites/bead (10 ¹²)	site-site distance (Å)	site conen (mM)
0.003^{c}	57	98	4.0	1.8	1.17	1.54	1.59	0.1	169.8	0.4
0.019^{c}	57	98	4.0	1.8	1.18	1.53	1.58	0.7	88.9	2.9
0.035^{c}	57	98	4.0	1.8	1.18	1.53	1.58	1.3	72.2	5.4
0.050°	57	98	4.0	1.8	1.18	1.53	1.58	1.9	63.7	7.9
0.065^{d}	57	98	4.0	1.8	1.19	1.51	1.56	2.5	58.1	10.4
0.134^{d}	57	98	4.0	1.8	1.22	1.48	1.53	5.2	45.5	21.7
0.646^{e}	57	98	4.0	1.8	1.45	1.24	1.28	30.3	25.3	126.3
0.988^{f}	58	99	4.1	1.9	1.66	1.14	1.12	52.9	21.2	215.0

^a Degree of Boc-TOAC-OH labeling. ^b Copolymer of styrene-1% divinylbenzene: d = 0.99 g/mL; average diameter of dry beads = 47 μm. ^c Obtained from 0.050 mmol/g of BHAR. ^d Obtained from 0.14 mmol/g of BHAR. ^e Obtained from 0.80 mmol/g of BHAR.

TABLE 4. Correlation between Yield^a of Boc-Pro-OH Coupling to BHAR (1.40 mmol/g) and Site Concentration and Site-Site Distance Values


solvent	site concn (M)	site-site distance (Å)	coupling (%)
DCM	0.21	21.7	90
DMF	0.55	17.0	67
DMSO	1.76	14.2	25

^a Yield of Boc-Pro-OH coupling after 30 min, at 25 °C with PSA method in equimolar conditions (1 mM of reactants).

The Journal of Organic Chemistry

JOCEAH.

PUBLISHED BY THE AMERICAN CHEMICAL SOCIETY

The Journal of Organic Chemistry

2006 Calendar

January

February

March

April

Man

June

luly

August

September

October

November

December

January 2007

Determination of the Absolute Configuration of Flexible Molecules by ab Initio ORD Calculations: A Case Study with Cytoxazones and Isocytoxazones Egidio Giorgio, Mariin Roje, Katsunorii Tanaka, Zdenko Hamersak, Vitromir Sunjic, Koji Nakanishi, Carlo Rosini, and Nina Berova J. Org. Chem.; 2005; 70(17) pp 6557 - 6563; (Article) DOI: 10.1021/j0048023+

(+)-cis-Isocytoxazone, a structural isomer of the natural cytokine modulator (-)-cis-cytoxazone, exemplifies a flexible molecule. Ab initio calculations of its optical rotations (OR) by Density Functional Theory at four wavelengths (589, 546, 435, and 405 nm) on 10 optimized conformations within 2 kcal/mol led to Bolzmann average OR values in excellent agreement with the experimental OR data in three different solvents. See Berova and co-workers, p 6557.

A NEW SPIN: **PEPTIDE PROBES**

Unnatural amino acid TOAC, a novel spin label used in EPR studies, belps illuminate peptide structure

Elizabeth K. Wilson C&EN West Coast News Bureau

n this golden age of biotechnology, proteins and their abbreviated siblings, peptides, are under remarkable scrutiny. And as with proteins, the folding and structure of peptides are of immense interest to biochemists. They want to know precisely what drives a peptide to adopt a certain structure and how peptides interact with other peptides, proteins, and cell membranes-this knowledge will generate innumerable and invaluable leads for therapeutic drug design and other biological applications.

Scientists, of course, have numerous tools at their fingertips with which to study peptides and proteins, including nuclear magnetic resonance spectrosco-

py and X-ray crystallography. And thanks to recent advances in technology, electron paramagnetic resonance (EPR) spectroscopy, sometimes also referred to as electron spin resonance (ESR), has moved alongside these tried-and-true methods.

EPR has a number of powerful advantages. Like NMR, it measures the energy required to flip the spin of a particle in the presence of an electromagnetic field, except that the particle that has its spin flipped is an unpaired electron rather than a nucleus. Pairs of electrons interact much more strongly than nuclei, and so the EPR technique is more sensitive over longer distances. EPR experiments can be done in solution and in solids, and one can obtain spectra in real time at a resolution of 1 millisecond.

Although any chemical entity with an unpaired electron (such as a radical) can give rise to an EPR spectrum, the source of the unpaired electron used in EPR investigations often is a so-called

From left, São Paulo spin label researchers Schreler, Nakale, and Paiva.

or a metal that chemists affix to a

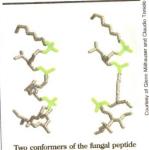
Nitroxide spin labels typically used in peptide and protein studies are attached through flexible chains. For example, a common flexibly linked spin label consists of a disulfide group with methylene groups on either side, attached to a cysteine residue. But because these chains flop around, the resulting EPR spectra tend to be muddy, making it difficult to obtain accurate information.

But now a unique spin label that's particularly well suited for peptides is making a splash with some biochemists. The label is a little-known unnatural amino acid dubbed TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid). TOAC has the advantage of being rigid and so yields extremely accurate information about the twists and turns of a peptide's backbone. It is also a strong helix stabilizer-that is, its presence in a peptide chain helps form α- and 310helices, two common secondary structures in polypeptides.

The molecule actually has been around since the 1960s. In the early 1980s, then-graduate student Clovis R. Nakaie, guided by biophysics professor Antonio C. M. Paiva at the Federal Uni-

versity of São Paulo, in Brazil, and biochemistry professor Shirley Schreier at the University of São Paulo, figured out how to attach a TOAC derivative to the ends of a peptide.

But inserting TOAC site-specifically into the middle of a peptide was a more difficult problem. Unlike other spin labels, TOAC is a complete amino acid in and of itself, and so it can't be simply added to a peptide side chain. In order to insert TOAC, it must be worked into the peptide synthesis itself.

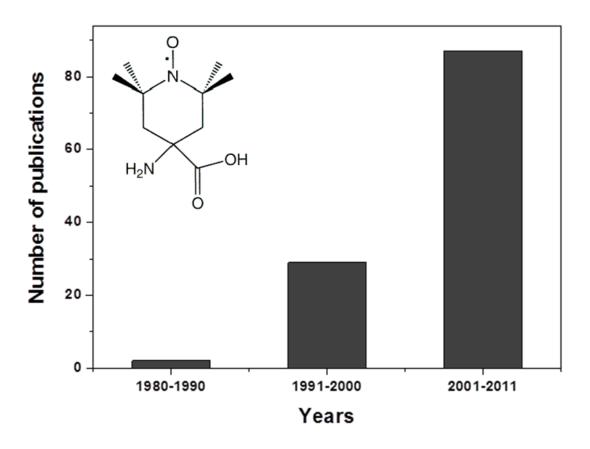

Unfortunately, the solidphase technique used to synthesize peptides, in which amino acids are sequentially added onto a strand attached to a resin, employed treatments with trifluoroacetic acid (TFA) that irreversibly neutralized the vital nitroxide

In 1993, Nakaie, who is now a biophysics professor at the Federal University of São Paulo, and graduate student Reinaldo Marchetto found a solution that involved, in part, using hy-

spin label—a moiety such as a nitroxide | drofluoric acid instead of TFA during the synthesis, which preserved the nitroxide.

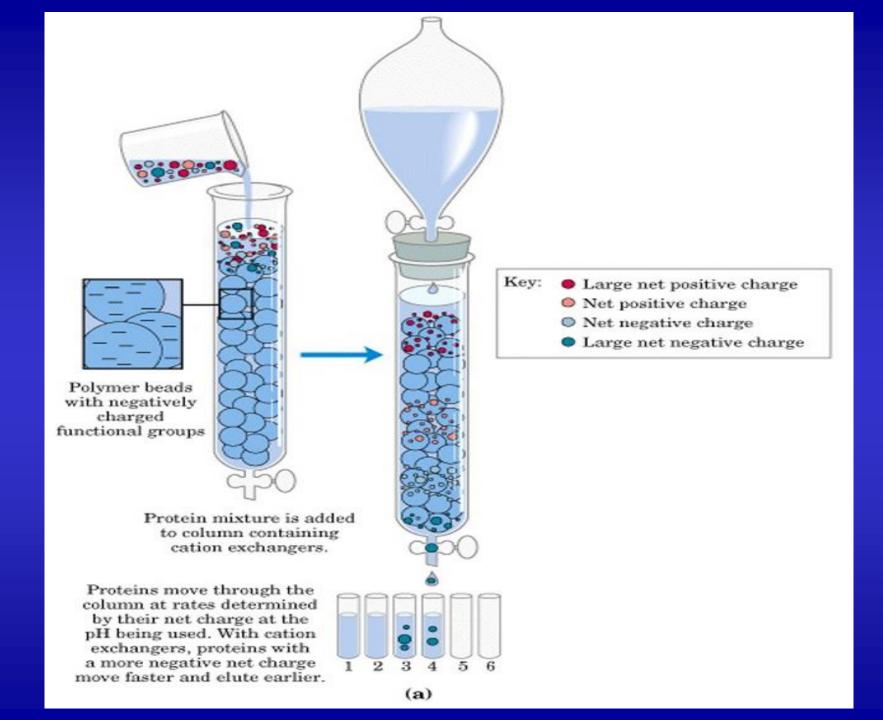
Several groups now are finding TOAC very useful for peptide EPR studies, and they say interest in the label is growing.

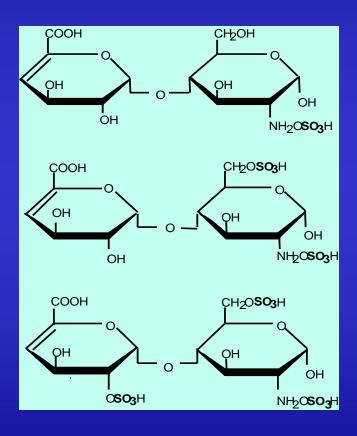
"This is a really wonderful reporter of



trichogin. ESR measurements using TOAC spin labels show that the predominantly a helical conformer at left and the mixed helical and unfolded conformer at right exist in nearly equal proportions. TOAC labels are green and the remaining backbone and side chain atoms are gray.

Chemical & Engineering News


E. K. Wilson (2000): 78, 54-59.


PARA A SÍNTESE PEPTÍDICA E CROMATOGRAFIA LÍQUIDA EM COLUNA

RESINAS

Resina	Abreviatura	Estrutura
Benzidrilamino	BAR	H ₂ N —POLIESTIRENO
4-metil-benzidrilamino	MBAR	H ₂ N —POLIESTIRENO
4-butil-benzidrilamino	BUBAR	H ₂ N POLIESTIRENO
4-cloro-benzidrilamino	ClBAR	H ₂ N POLIESTIRENO
2,4-dicloro-benzidrilamino	diClBAR	CI CI H ₂ N POLIESTIRENO
1- Naphthyl, Acetyl - benzidrilamino	NAFIR	H ₂ N POLIESTIRENO
1- Naphthoyl - benzifrilamino	NAFOR	H ₂ N POLIESTIRENO

DISSACARÍDEOS

Dissacarídeo Insaturado

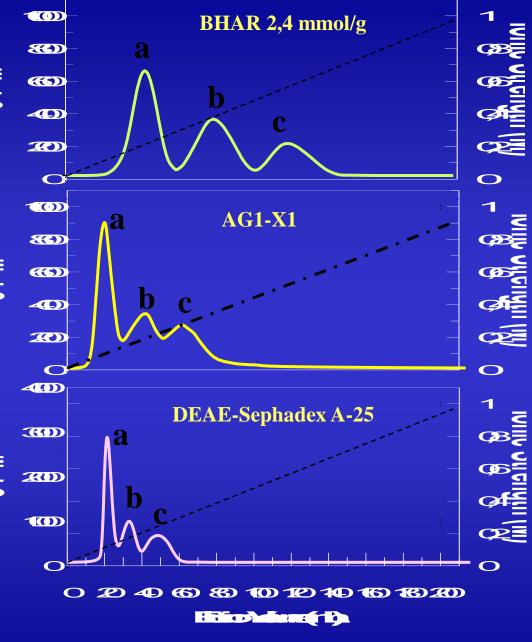
N-sulfatado - (△U-GIcNS)

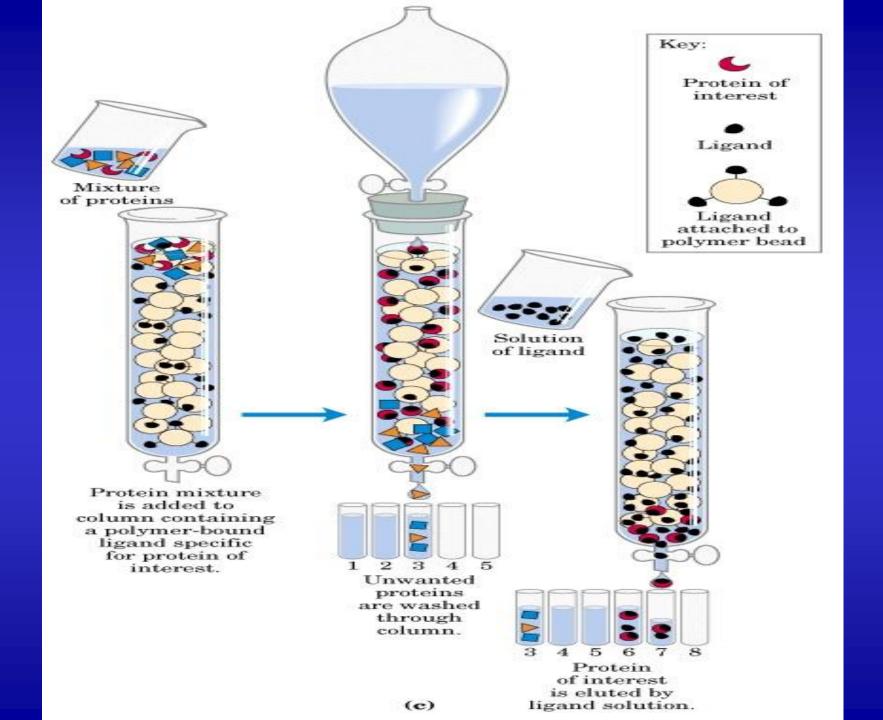
(-2)

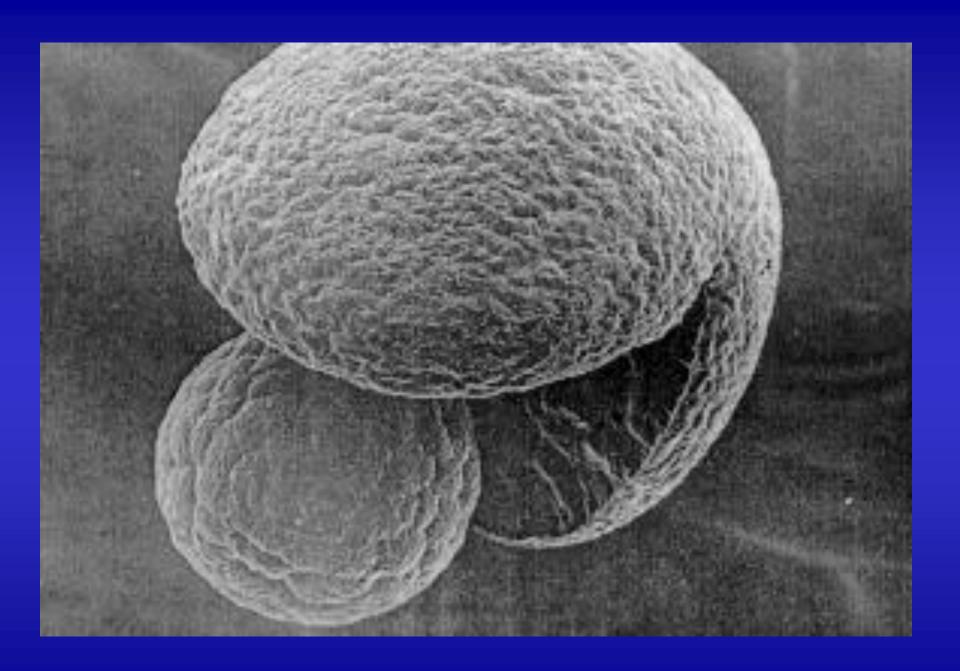
Dissacarídeo Insaturado

N-sulfatado, 6-sulfato - (△U-GlcNS,6N)

 $0 \longrightarrow \frac{b}{(-3)}$

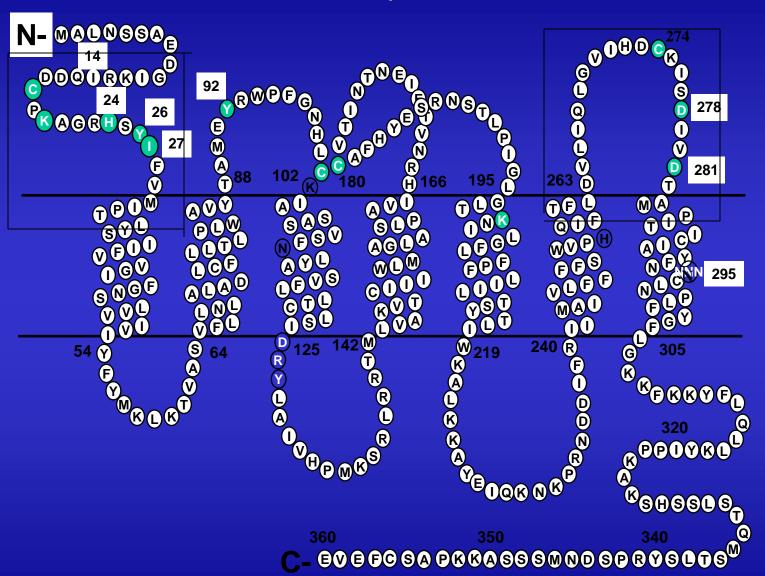

Dissacarídeo Insaturado

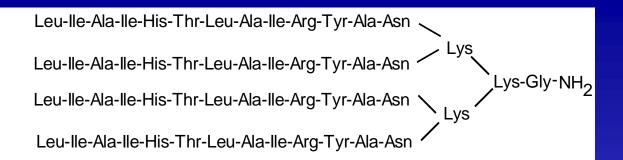

Trissulfatado - (∆U,2S-GlcNS,6N)

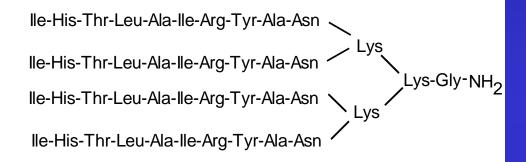


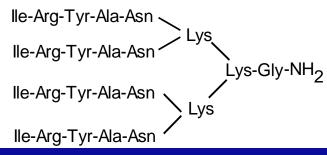
ANION EXCHANGE CHROMATOGRAPHY OF DISACCHARIDES

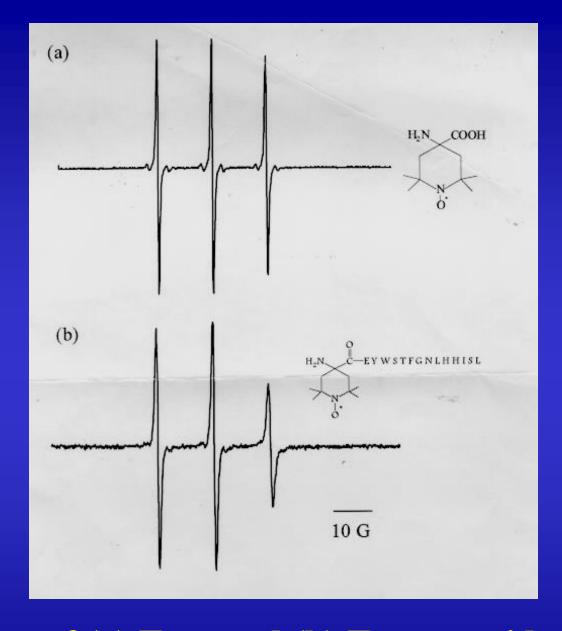
Anion exchange chromatography of radiolabeled disaccharides {-2; [35S]-ΔU-GlcNS}a, {-3; [35S]-ΔU-GlcNS, 6S}b and {-4; [35S]-ΔU,2S-GlcNS, 6S}c in linear NaCl-gradient from 0.0 to 2.0 M (100 mL each) in 0.05 M ammonium acetate solution pH 5.0. Volume of resins : 1.4 cm³,




UNIVERSIDADE FEDERAL DE SÃO PAULO DEPARTAMENTO DE BIOFÍSICA

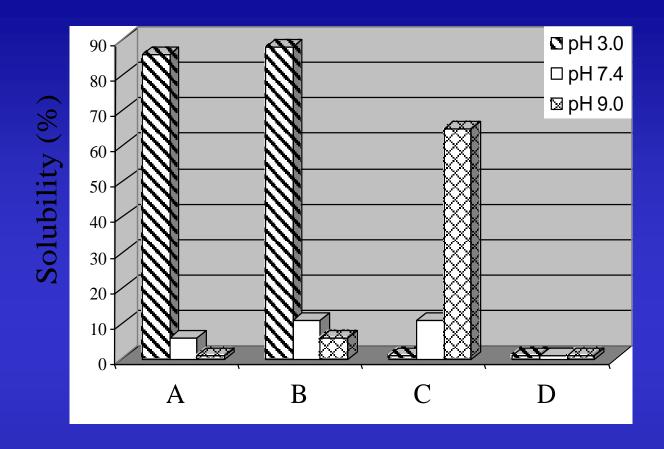

PEPTÍDEOS


Receptor AT₁


Chemical structure of $\{[(acetil-NANP)_3-Eac]_4-(Lys)_2-Lys-DEAE-(MacroPrep or Sephadex A50) used for affinity chromatography.$

Peptídeos MAP do Paracoccidioides brasiliensis

EPR spectra of (a) Toac and (b) Toac-peptide in aqueous solution, at 22°C


Atividade biológica de análogos da Angiotensina II contendo Toac e Pip

<u>Análogo</u>	Aorta de coelho	<u>Útero de rata</u>	<u>Íleo de cobaia</u>
Toac ⁰ -AII	3%	18%	2,3%
Toac¹-AII	1%	62%	14,2%
Toac ³ -AII	NR	NR	NR
Toac ⁷ -AII	NR	NR	NR
Pip ⁷ -AII	0,4%	0,9%	NR

NR : atividade biológica menor que 0,01%

Pip: Ácido pipecólico

EFEITO DO SOLVENTE NA SOLUBILIZAÇÃO DE PEPTÍDEOS

Solubility degree of (1-42) β -amyloid [**A**], (1-21) β -amyloid [**B**], TM-32 [**C**] and VVLGAAIV-amide [**D**] peptides as a function of the pH of the medium.

Conclusões principais deste tópico

- 1. Como <u>regra geral para a solubilização de peptídeos</u> mesmo os mais insolúveis os melhores solventes são os que apresentam grande diferença entre os valores de AN e DN. Por esta razão, os solventes <u>HFIP</u> (alto AN) e <u>DMSO</u> (alto DN) são os melhores solubilizantes na classe dos solventes simples.
- 2. No caso dos solventes mistos, a <u>adição da água</u> (alto AN) deve ser avaliada com cautela. O seu efeito é, por exemplo, prejudicial na solubilização de peptídeos agregantes, se misturada com DMSO (alto DN). Por outro lado, a sua adição ao HFIP ou TFE (alto AN) parece não prejudicar o efeito solubilizante dos mesmos.

- Malavolta, L. e Nakaie, C. R. [Tetrahedron (2004) 60, 9417]
- Malavolta, L, Pinto, M.R.S., Cuvero, J.H., Nakaie, C.R. [Protein Science (2006) 15, 1476

Amyloid β-Protein Fragment

H-4854

(D-Asp1)-Amyloid b-Protein (1-42)

H-D-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-Val-Ile-Ala-OH

Catalog Number Unit Price per Unit QTY

```
H-4854.0500 0.5 mg - USD 345.00
H-4854.1000 1 mg - USD 540.00
```

C203H311N55O60S

Mr:4514.1

Longterm storage temperature: - 15 ° C

Bulk Quantity

CUSTOM PEPTIDES

Immunograde			» 80 %		» 95 %		> 97%		
AA	5 mg	25 mg	50 mg	2 mg	10 mg	25 mg	2 mg	10 mg	5-10 mg
6	178	723	290	218	305	396	333	488	808
7	187	239	311	231	328	425	347	517	823
8	197	256	332	245	351	456	361	546	838
9	206	273	354	258	374	489	375	575	85-4
10	216	290	375	272	396	523	389	604	869
11	227	308	399	287	421	556	403	637	899
12	239	326	427	302	447	590	417	671	930
13	250	345	457	317	474	624	431	704	960
14	261	363	488	332	502	657	445	738	991
15	272	381	518	347	529	691	459	771	1 037
16	285	406	549	362	556	724	477	805	1 082
17	298	434	579	379	584	758	496	838	1 128
18	311	466	610	396	511	791	515	872	1 174
19	323	499	640	413	639	825	535	906	1 220
20	336	531	671	429	666	858	554	939	1 296
21	352	563	704	449	697	895	577	977	1 372
22	368	595	738	475	730	935	605	1 015	1 448
23	384	627	771	503	764	973	636	1 053	1 555
24	400	659	805	535	797	1 011	671	1 092	1 662
25	416	691	838	567	831	1 049	707	1 130	1 768
Delivered with*		HPLC MS		HPLC AAA or MS NPC determination (option)		HPLC AAA or MS NPC determ.		AAA + M NPC determ	
Delivery		2 (3 wee	ks		3 / 4 wee	es.	377	weeks	3 / 5 week

*Additional analyses upon request Prices are per peptide. Postage and insurance not included. Do not hesitate to contact us for smaller or larger quantities. AAA : Amino Acid Analysis NPC : Net Peptide Content MS : Mass Spectrum

ADDITIONAL CUSTOM SERVICES

Acetylation Phosphorylation Free 61 € Amidation Conjugation Free

Biotinylation Cyclisation 23 €

Other modifications upon request: amino acid spacers, non standard amino acids, N- or C-terminal labelling, MAP's, amide bond cyclisation, pseudopeptides...

September 2001

Estudos básicos e aplicações práticas

Peptídeos-

Polímeros (Resinas)

a) **QUÍMICO**

- Aprimoramento do método de síntese;
- Síntese de sequências difíceis ou não usuais;
- Com elevado teor peptídico no grão;
- Com aminoácidos não naturais;
- Com uso de marcadores de spin do tipo aminoácido (Toac, Poac)

b) FÍSICO-QUÍMICA/BIOFÍSICA/FARMACOLOGIA

- Estudo de interação peptídeo-solvente
- teoria de solubilização, via AN e DN;
- Estudos espectroscópicos de conformação (RPE, CD, NMR, etc);
- Propriedades farmacológicas e modelagem molecular
- Estudos de interação em sistemas membrana-miméticos;
- Efeito estrutural de irradiação gama;

c) APLICAÇÕES

- Autonomia na produção de diferentes tipos de peptídeos;
- Autonomia na obtenção de matérias primas como copolímeros de partida, resinas, derivados de aminoácidos, etc

Introdução de derivados dos marcadores de spin (Toac e Poac e peptídeos ativos com estes marcadores (α-MSH e derivado); Patentes.

- Peptídeo para Diabetes insipidus (desde 2004, Governo de SP);
- Inibidores para doenças neurodegenerativas (em andamento).

a) <u>QUÍMICO</u>

- Síntese do copolímero de partida;
- Síntese de resinas com alto teor de sítios reativos:
- Síntese de resinas com tamanho e teor de intercruzamento alterados;

b) FÍSICO-QUÍMICA/BIOFÍSICA

- Estudos por microscopia de grãos e por RPE, NMR, FTIR;
- Regras de solvatação de polímeros
- Proposição de uma nova escala de polaridade de solventes.

c) APLICAÇÕES

- Síntese de resinas inéditas para uso em síntese peptídica
- Síntese de resinas inéditas para cromatografias em coluna (trocaiônica, afinidade, etc).
- Uso de resinas comerciais de troca iônica para síntese peptídica e cromatografia de afinidade;
- Centro de análise de medicamentos genéricos (ensaios de biodisponibilidade -NUBEC) desde 2003.

Prof. Dr. Antônio Cechelli de Mattos Paiva.