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1. Introduction 

Given an environment, such as the human skin or water in a pond, its microbiota is the collection of all 

microorganisms inhabiting it. We define the microbiome of that environment as the collection of 

genomes, genes, and gene products directly related to that microbiota. This is considered a genome-driven 

definition. For a broader definition, we refer the reader to the paper by Berg et al. (1). We also refer the 

reader to an encyclopedia entry on the term Microbiome (2). 

Environments can be sampled, and the total DNA from a sample can be extracted, and this DNA can be 

sequenced (this is also known as the shotgun approach for microbiome sequencing). The set of DNA 

reads obtained from the sample in this way is called a metagenome dataset. 

Metagenome-assembled genomes, or MAGs, are genomes reconstructed from a metagenome dataset. For 

the past 10 years or so, MAGs have become an essential tool for the understanding of microbiomes. It has 

become almost routine for single papers to describe dozens, hundreds, or even thousands of MAGs from 

specific environments (3-5).  

In this chapter we will describe how can MAGs be obtained, analyzed, and compared. Even though 

metagenome datasets generally contain DNA from a variety of microorganisms (viruses, bacteria, 

archaea, protozoans), for simplicity of exposition our focus in this chapter will be on bacterial genomes. 
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2. How MAGs can be obtained 

The steps for the reconstruction of MAGs are outlined in Figure 1. Here we give brief descriptions of 

each of those steps. 

As defined above, a metagenome dataset is a collection of DNA reads that are the result of sequencing. 

Pre-processing: the reads must be checked for quality and for the presence of artifacts (such as adapter 

sequences).  

Assembly: the next step is to assemble the reads. Two popular assembly tools for metagenome datasets 

are MEGAHIT (6) and  metaSPAdes (7). The result of this step is a collection of contigs. A contig is a 

DNA sequence that presumably corresponds to a contiguous section of a genome. If the contig was 

assembled from several reads, its length should be longer than any of the constituent reads. In the best 

possible case, a contig may correspond to an entire genome, assuming the genome to be just one 

chromosome, as is the case for many bacteria. But this scenario is very unlikely for metagenome datasets. 

The most frequent outcome, especially for complex environments (environments that contain thousands 

of species), is a collection of thousands or hundreds of thousands of contigs. A comparison of different 

assembly tools for metagenome datasets was done by Vollmers et al. (8). 

Binning: this is the step in which we separate contigs into bins, with each bin representing one individual 

genome. The general idea is to determine intrinsic properties of contig sequences, and then place in the 

same bin those contigs which have the same or almost the same properties. Many properties can be used 

to group contigs into bins, but the most common is the k-mer profile (9). 

The binning process is vulnerable to false negative and false positive errors. In order to explain false 

negatives, it is important to mention the biological phenomenon of Horizontal Gene Transfer, or HGT 

(10). In the context of this chapter, it is useful to distinguish between ancient and recent HGT events. In 

an ancient HGT event, foreign DNA that entered a genome had time to evolve and become more like the 

host genome. This means, for example, that the k-mer profile of the foreign DNA will be similar to the k-
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mer profile of the host genome, and therefore should not be a problem for binning. On the other hand, a 

recent HGT event means that not enough evolutionary time has elapsed for the foreign DNA to adapt to 

the host genome, in the case that the foreign DNA is “very different” from that of the host (for example, 

when the host is a bacterium and the foreign DNA comes from a virus). In this case, the k-mer profile of 

the foreign DNA will likely be quite different from that of the host, and will likely result in the binning 

program not placing the corresponding contig in the correct bin, and hence a false negative error will be 

created. 

A false positive error occurs when a contig that does not belong to a bin is incorrectly placed in that bin. 

This may happen, for example, when the contig in question has properties (such as its k-mer profile) that  

are similar to the properties of other contigs that are already in the bin. A k-mer profile is not an absolute 

property that is able to distinguish any two organisms; two different organisms may share similar k-mer 

profiles purely by chance. This is rare, but it is not impossible.  

An important question regarding the use of k-mer profiles to bin contigs is the minimum length required 

of a contig so that its k-mer profile will be sufficiently similar to the k-mer profile of its genome. 

Experiments show (11) that the accuracy of a k-mer profile for the purposes of binning decreases with 

contig length. A rough guideline is that contigs that are shorter than 2500 bp (12) are in general not long 

enough to be properly binned using k-mer profiles . 

Once we have distributed the contigs into bins, we can say that each bin is a candidate MAG. In order to 

declare that a bin is in fact a MAG we still have to apply quality criteria, as described in Section 3. 

Pipelines for obtaining MAGs 

All the steps described above can be accomplished by a single pipeline, which can automatically run 

specific programs for each step. One such pipeline is MetaWRAP (13). MetaWRAP is a pipeline 

containing several modules for reconstructing and analyzing MAGs such as preprocessing, assembly, 

binning, bin refinement, taxonomic classification, and quantification of MAGs in samples. MetaWRAP is 
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flexible, allowing the user to optionally execute some steps outside the pipeline. In addition to the basic 

process for reconstructing MAGs (preprocessing, assembly, and binning), MetaWRAP contains the bin 

refinement module, a step which combines the results of different binning tools, improving on the result 

of using only a single binning tool. 

3. Quality checking 

3.1. Completeness and contamination 

The steps described in the previous section are all vulnerable to errors. Therefore, an essential additional 

step in determining MAGs is the evaluation of the genome quality of each bin. The quality criteria most 

commonly used are completeness and contamination. 

In evaluating completeness, we seek to determine how close the set of contigs present in a bin is to the 

complete genome they are assumed to belong to. This means that completeness is measured as a 

percentage; the closer to 100%, the more complete is the MAG. 

How can this be done, if we do not know what the real genome is? In the case of bacteria, the basic idea is 

to use knowledge about bacterial genes that are known to be present in all bacterial genomes (the core 

bacterial gene set). With the additional resource of having well-defined ortholog families for each of those 

genes (for example, in terms of Hidden Markov Models, (14)), we can readily check for the presence of 

these genes in any given candidate MAG. For example, the software CheckM (15) defines the bacterial 

core gene set as containing 104 “marker” genes. So, for example, if we find 95 of these genes in a MAG 

known to be from a bacterium, we could state that this MAG is 95/104 = 91.3% complete. This of course 

is an estimate; the real completeness value will in general be lower or greater than this value. (In reality, 

CheckM’s estimates are more sophisticated than the simple description just given.) 

In evaluating contamination, the core bacterial gene set is also used. If that set is assumed to contain only 

single-copy genes, then the presence of duplicates (or any number of occurrences greater than one) of 
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these genes is evidence of contamination. Just like in the case of completeness, contamination is 

expressed as a percentage. 

In explaining completeness and contamination we restricted the MAGs to be bacterial. The exact same 

reasoning applies to archaea; but of course we need to have a core archaeal gene set in order to measure 

completeness and contamination in MAGs that are classified as archaea. 

3.2. MAG quality standards 

Now that we have presented the essentials of MAG quality evaluation, there comes the next question: 

what quality values makes a MAG “good enough”? We will answer this question by presenting a proposal 

for minimum quality expectations for MAGs published by Bowers et al. (16) and called the MIMAG 

standard. The proposal is summarized in Table 1. 

In the literature, it is generally the case that the category medium-quality draft or higher is adopted for 

reporting overall number of MAGs.  

4. MAG annotation  

Once we have MAGs that are preferably at least medium-quality draft, the next step is to annotate them. 

Annotation is basically the process of locating genes in the genome and inferring what their function is. 

There is nothing in MAG annotation that differs from isolate genome annotation. Therefore, to annotate a 

MAG one can simply run an automated annotation pipeline. This can be done in a number of ways (17-

19). 

5. MAG comparative analysis 

5.1. MAG pairwise comparison 

After annotating a MAG, we are in a position to perform comparative analyses. The most basic 

comparison is one that will simply align the MAG with other genome sequences, both from isolates or 
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other MAGs. This can be done with a number of tools; among them we cite MUMmer (20) and fastANI 

(21). 

MUMmer computes and displays an alignment between any two genomes. It is very fast, aligning typical 

bacterial genomes in seconds on a standard laptop. FastANI aims to compare two genomes in terms of 

their Average Nucleotide Identity (ANI), expressing the result as a percentage (i.e., it does not actually 

align the genomes being compared). FastANI is also very efficient, and is a recommended tool for doing 

large-scale (i.e., hundreds or thousands) pairwise comparisons among bacterial genomes. 

5.2. MAG databases 

With the explosion of MAGs in the literature, some research groups have created MAG databases. Note 

that, ideally, there should be a central MAG repository, that would store and make available to 

researchers worldwide all MAGs that have been obtained by different groups, with frequent updates. This 

is the role that GenBank still plays with respect to isolate genomes. Unfortunately, there is no central 

repository for MAGs, which means that researchers interested in comparing their MAGs to other MAGs 

need to do searches against different databases. Here we briefly described two of these. 

The Genomes from Earth’s Microbiomes (GEM) catalog (22) contained, at the time of publication, 

52,515 MAGs, assembled from 10,450 metagenome datasets obtained from samples of diverse microbial 

habitats and worldwide geographic locations. It is hosted by the Integrated Microbial Genomes and 

Microbiomes (IMG/M) platform (23), at the Joint Genome Institute. All MAGs from the GEM catalog 

meet or exceed the medium quality level of the MIMAG standard (mean completeness = 83%; mean 

contamination = 1.3%). Of the total, 9,143 (17.4%) MAGs can be considered high-quality. 

The Unified Human Gastrointestinal Genome (UHGG) collection (24) contained, at the time of 

publication, 204,938 nonredundant genomes from 4,644 human gut prokaryotes. Not all of these genomes 

are MAGs, but the vast majority is. Before redundancy verification, the total number of genomes was 

286,997, of which 276,349 (96.3%) were MAGs. The authors do not give the exact number of 
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nonredundant MAGs in their catalog, but it can be assumed that it is close to 200,000. For the 

nonredundant set, the quality verification was as follows: at least 50% genome completeness and at most 

5% contamination. The authors further combined these two measures using the formula completeness – 5 

× contamination, and required each genome in the set to have value at least 50. This catalog is hosted by 

the European Bioinformatics Institute, at https://www.ebi.ac.uk/metagenomics/genomes. 

5.3. Taxonomic classification 

One important motivation for MAG comparisons is the need to identify the organism to which a MAG 

belongs. This is called taxonomic classification. There are several programs and platforms that perform 

this task. For the purposes of this chapter, we will focus on one popular tool called GTDB-tk (25, 26).   

GTDB-Tk is a software toolkit for taxonomic classifications of bacterial and archaeal genomes based on 

the Genome Taxonomy Database (GTDB) (27). It achieves classification by placing genomes in reference 

trees. GTDB-Tk first uses Mash (28) and FastANI (21) against all representative genomes on the GTDB 

database. Then, if the genomes are not classified by similarity with Mash and FastANI, HMMER (29) is 

used to identify a set of bacterial and archeal marker genes. These genes are concatenated and aligned, 

and then placed in a reference tree using the tool pplacer to determine the closest taxon in the tree.  

Although the methods for obtaining and doing quality control of MAGs are constantly being improved, 

the fact remains that a MAG does not, by definition, correspond to an isolate. This means that one has to 

be careful about the biological reality of any given MAG. Prompted by this consideration, Setubal (30) 

proposed that MAGs can be classified into 3 categories: 

SMAGs: MAGs for which a species can be assigned. This assignment assumes that there exists an isolate 

genome that has been correctly classified as belonging to species S, and that the ANI between the MAG 

and the isolate genome from S is at least 97% (some authors use 98%). It is good practice to also require 

that an alignment between the MAG and the S genome cover at least 80% of both genomes. 

https://www.ebi.ac.uk/metagenomics/genomes
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CHMAGs (or Conserved Hypothetical MAGs): These are MAGs that have ANI against another MAG 

(or another isolate genome for which there is no species assignment) satisfying the same requirements as 

that for a SMAG. 

HMAGs (Hypothetical MAGs): These are MAGs that cannot be classified either as SMAGs or 

CHMAGs. The use of the word hypothetical in the definition stresses the fact that we do not have strong 

evidence that the MAG indeed corresponds to the genome of an actual organism. 

Most MAGs from nonhuman samples are HMAGs (31). In the GEM catalog, at the time of publication, 

12,556 nonredundant MAGs could be considered HMAGs, out of 18,028 nonredundant MAGs; that is a 

fraction of nearly 70%. If one assumes that the MAG recovery methods by and large recover correct 

genomes, this high fraction can be interpreted to mean that most prokaryotes are still unknown (belonging 

the so-called microbial dark matter). 

Over time, as more isolate genome and metagenome sequencing is done, the expectation is that many 

CHMAGs will become SMAGs and that many HMAGs will become either CHMAGs or even SMAGs.  

5.4. MAGset and MAGcheck 

The authors have developed two tools to facilitate MAG comparison. In this section we briefly describe 

them. 

MAGset accepts as input one MAG and a set of reference genomes. The reference genomes should 

belong to the same species as the MAG, which means that in principle MAGset is aimed at SMAGs (it 

can also be used for CHMAGs). MAGset provides the user with information about genomic regions and 

genes that are present in the MAG and absent in the reference genomes and vice versa. This is based on 

the concept of Genomic Region of Interest (GRI). The definition of a GRI is that it is a genomic region of 

size at least 5 kbp that is present in the MAG and absent in all reference genomes (in which case we call it 

a positive GRI); or it is a genomic region with the same size constraint present in at least one reference 

genome but absent in the MAG (in which case we call it a negative GRI). 
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In addition to finding GRIs, the software offers a user-friendly interface, through which the user can make 

searches to better understand the differences between the MAG and the reference genomes. The search 

mechanism was based on the search mechanism provided by the platform VeuPathDB 

(https://veupathdb.org/veupathdb/app).   

MAGcheck is an accessory module of MAGset. After negative GRIs have be found in a given 

comparison, MAGcheck can search among the reads that were used to obtain the MAG and determine 

whether any of the negative GRIs can actually be found, in full or in part, among the reads. If reads 

covering at least 80% of a negative GRI, the user can, if desired, try to improve the assembly of the MAG 

being studied. The functionality for this improvement is not provided by MAGcheck, since it requires a 

specific re-assembly of the MAG in question. 

6. Practical example 

In this section we offer a complete example of how to generate, evaluate and compare MAGs, based on a 

real world public dataset. 

6.1. Assumptions 

In order to run the example, we assume the reader is familiar with Linux (and the bash shell) and has 

access to a server running Linux with at least 100 Gb of RAM. The programs listed in Table 2 need to be 

installed in the server. 

6.2. Sample description 

The metagenome dataset used in this example comes from 1163 fecal samples from premature infants 

(32). Fecal samples are considered to contain primarily DNA of the gut microbiota. 

6.3. Downloading the data 

The data is publicly available for download on the NCBI website (https://www.ncbi.nlm.nih.gov/) using 

the SRA Toolkit. We do this by running the following commands: 

https://veupathdb.org/veupathdb/app
https://www.ncbi.nlm.nih.gov/


11 
 

$ prefetch SRR3466404 --max-size 420000000000 

$ fasterq-dump SRR3466404 

Where: 

• prefetch is a tool that downloads the data from NCBI. Parameters explained: 

o SRR3466404 is the reference code of the dataset we are downloading. Generally, this code is 

available inside the article when the data is public. 

o --max-size indicates the maximum download size allowed (this parameter is necessary 

because this dataset is bigger than the default limit size). 

• fasterq-dump is a tool to convert the original NCBI download format to the format we needed for 

the next steps (fastq). SRR3466404 is the reference code of the data we downloaded. 

After executing these commands, two metagenomic files (paired-end read files) will be available inside 

the folder: 

• SRR3466404_1.fastq 

• SRR3466404_2.fastq 

6.4. Preprocessing 

We want to ensure that all sequences are high-quality and without artefacts. Therefore, we preprocessed 

the raw reads by trimming them using the Read_qc module from MetaWRAP. This module preprocesses 

the reads based on the sequencing quality assigned to each nucleotide. As defaults, MetaWRAP uses Trim 

Galore for quality trimming and cutadapt for adapter removal. We used the following command line for 

the preprocessing step: 

$ metawrap read_qc -1 SRR3466404_1.fastq -2 SRR3466404_2.fastq -t 4 --skip-

bmtagger -o READ_QC 
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The parameters -1 and -2 refer to the forward and reverse raw reads respectively. By default, the 

read_qc module includes decontamination by aligning the reads to a host genome (e.g. the human 

genome) and by removing the reads that have more than a given similarity threshold. In this practical 

example, we used the --skip-bmtagger flag to skip this decontamination step, assuming that the raw 

reads from the downloaded dataset are not contaminated. After read_qc execution, two HTML reports 

are generated, one for the raw reads and another after quality trimming (respectively pre-QC_report 

and post-QC_report). 

6.5. MAG Assembly pipeline 

The main wrapper function of MetaWRAP consists in separate modules for assembly, initial binning, and 

binning refinement. For assembly, we used the option MEGAHIT and executed the following command 

line: 

$ metawrap assembly -1 READ_QC/*_1.fastq -2 READ_QC/*_2.fastq -m 100 -t 12 --

megahit -o ASSEMBLY 

 

Alternatively, metaSPAdes (7) can be used in the MetaWRAP pipeline.  metaSPADES is an excellent 

assembler; it generates the best contig size statistics compared to other assemblers. However, it requires 

large RAM memory. MEGAHIT is a good option if the available RAM is less than, say, 16 Gb. 

After obtaining the contigs by assembling the reads, we executed the initial binning using three different 

tools: MaxBin2 (33), metaBAT2 (12), and CONCOCT (34). MetaWRAP offers the option of executing 

the binning step with all three binners in one command line: 

$ metawrap binning -o INITIAL_BINNING -t 12 -a ASSEMBLY/final_assembly.fasta 

--metabat2 --maxbin2 --concoct READ_QC/*.fastq 
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MetaWRAP includes a module that is able to combine the results of all three binning tools and yield a 

result that should be better than the one generated by any of these binners separately. This can be done by 

the following command: 

$ metawrap bin_refinement -o BIN_REFINEMENT -t 12 -m 100 --quick -A 

INITIAL_BINNING/metabat2_bins/ -B INITIAL_BINNING/maxbin2_bins/ -C 

INITIAL_BINNING/concoct_bins/ -c 50 -x 10 

 

The bin sets from each binning tool are combined and compared against each other. The parameter -c 

refers to the minimum required completeness and -x to the maximum contamination allowed. In the end, 

we obtain a set of reconstructed MAGs and a report of their completeness, contamination, size, and other 

metrics, as given by CheckM (15). The reports can be visualized using the following command line: 

$ cat BIN_REFINEMENT/metawrap_50_10_bins.stats 

In our example, we obtained 28 MAGs with the metrics shown in Table 3. 

In general, MAGs will be a fraction of all the data contained in a metagenome dataset. This fraction will 

vary according to many factors, such as minimum completeness threshold used to generate MAGs, 

microbial diversity in the sample, and sequencing depth. For the dataset we are using in this example, this 

fraction is 70%, if we simply count number of contigs in MAGs relative to the total number of contigs, or 

87%, if we count number of sequence base pairs in MAGs relative to the total number of sequence base 

pairs in contigs (Table 4). This result suggests that the sample in the example is not particularly diverse, 

and the sequencing depth allowed us to capture a large fraction of this diversity in the MAGs. Note 

however that any comprehensive microbiome analysis of the studied environment (the human gut in this 

case) should take into account not only the MAGs but also contigs not included in MAGs. The analysis of 

such contigs is outside the scope of our example. 
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6.6. Taxonomic classification 

To obtain the taxonomic classification of the MAGs assembled in the previous step, we use GTDB-tk 

(26). We do this by running the following command: 

$ gtdbtk classify_wf --min_af 0.8 --extension fa --genome_dir 

/work/analysis/metawrap/BIN_REFINEMENT/metawrap_50_10_bins/ --out_dir 

gtdbtk_result 

Where: 

• classify_wf is the default workflow to generate the taxonomic classification. 

• --min_af is the minimum alignment necessary to assign the MAG to a species. Here, we are 

using 0.8 (80%), but the default value is 0.5 (50%). 

• --extension is the extension of the MAG files; in our case it is “.fa” 

• --genome_dir is the folder in which MAG files can be found.  

• --out_dir is the folder in which the GTDB-tk results will be placed. 

Once execution is complete, the result folder will contain one file called 

gtdbtk.bac120.summary.tsv. This file indicates the best classification obtained for each MAG. As 

this file is tab-delimited, to visualize the data we suggest using a spreadsheet program. The most 

important columns for our objective are: 

• classification: Indicates the classification level of the MAG. If one species name is filled after the 

“s__” content, the MAG was classified at the species level. Otherwise, if the column content 

finishes just with “s__”, the MAG was not classified at the species level. 

• fastani_reference: Indicates (for the MAGs classified at the species level) which reference 

genome was considered to classify the MAG at that level.  

• fastani_ani: Indicates the ANI result between the MAG and the reference.  
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It is necessary to pay attention to the reference genome because sometimes the reference genome is 

another MAG (it is not an isolate genome). This situation may mean that the classification is not as 

reliable as one obtained by reference to an isolate genome. The results of GTDB-tk are summarized in 

Table 5. 

6.7. Searching MAGs against the GEM database 

In addition to obtaining a classification for our MAGs, it is of interest to determine whether the MAGs we 

recovered have been found in other environments. Some of this information is given already by the 

GTDB-tk results, since a classification at the species level implies that there is at least one other genome 

of the same species that was isolated from some sample (or, rarely, another MAG, as explained above).  

In this example, we will show how our MAGs can be searched against the GEM database (described in 

Section 5.2). Because our metagenome dataset comes from the human gut, it would make more sense to 

search against the UHGG collection (also described in Section 5.2). However, the UHGG database is too 

large for local processing; so we chose to demonstrate the MAG database search step using GEM. 

First of all, it is necessary to download the GEM database (22) from its repository: 

https://portal.nersc.gov/GEM/genomes/ 

As we want to compare FASTA files, download the fna.tar file, and extract the contents in a folder of 

your preference. The commands are as follows: 

$ curl -o fna.tar https://portal.nersc.gov/GEM/genomes/fna.tar 

$ mkdir /work/databases/GEM 

$ tar xvf fna.tar -C /work/databases/GEM/ 

 

After extracting the GEM database, generate one file with the list of all GEM genomes with the complete 

path, using the command: 

$ find /work/databases/GEM/fna > list_fna_GEM.txt 

https://portal.nersc.gov/GEM/genomes/
https://portal.nersc.gov/GEM/genomes/fna.tar
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In the next step we compare our MAGs against all GEM genomes. As the GEM database has more than 

fifty-two thousand genomes, it could be necessary to split the process to use less memory. Here, we will 

split it into 10 batches of a maximum of 5500 lines each. 

$ split -d -l5500 list_fna_GEM.txt input_GEM_mags_list/GEM_list_split_ 

 

This command will generate 10 files inside the folder “input_GEM_mags_list”, named as 

GEM_list_split_{0..9} (numbered from zero to nine). 

After generating the files with the list of GEM genomes, we need to do the same process to generate a file 

with all assembled MAGs. The content of this file should be all genome file paths obtained in Section 6.5 

(one file per line).: 

  $ find /work/analysis/metawrap/BIN_REFINEMENT/metawrap_50_10_bins/ > 

input_mags_from_reassembly.txt 

Please make sure to change the path where the MAGs are available at the command above if you are 

using a different folder structure.  

In the next step we use fastANI to compare the genomes. The following command compares our 

assembled genomes with the GEM genomes: 

$ for i in input_GEM_mags_list/*; do fastANI -t 16 --minFraction 0.8 --ql 

input_mags_from_reassembly.txt --rl "$i" -o "result_01_$i.txt"; done; 

Where: 

• for i in input_GEM_mags_list/* iterates between the files. 

• -t 16 is the threads quantity to execute the software. 

• minFraction 0.8 is the minimum alignment necessary to define that two genomes are similar 

enough to be reported. Here, we are using 0.8 (80%), but the default value is 0.2 (20%). 
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• --ql input_mags_from_reassembly.txt is the genome list to compare against the GEM 

genomes. In our case it is the list of assembled genomes in previous steps.  

• --rl "$i" is the GEM genome list files. 

• -o "result_01_$i.txt" is the result file of the comparison.  

The command above took about three hours on a server with 16 processors and 100 Gb of RAM. The 

result of this command will be a list of files with the results found by fastANI, but we need to do some 

additional steps to get the results we are interested in: 

$ cat result_01_*.txt > result_02_ani.txt 

$ rm result_01_*.txt 

$ awk '{ if ($3 >= 95) { print } }'   result_02_ani.txt >  

result_03_ani_filtered_by_greater_than_95.txt 

$ sort -k1,1 -k3nr,3 result_03_ani_filtered_by_greater_than_95.txt | sort -

k1,1 -u > result_04_identified_chmags.txt 

$ sort input_mags_from_reassembly.txt > 

result_05_original_mags_from_article_sorted.txt 

$ sort result_04_identified_chmags.txt > 

result_05_identified_chmags_sorted.txt 

$ comm -23 result_05_original_mags_from_article_sorted.txt 

result_05_identified_chmags_sorted.txt > result_05_identified_hmags.txt 

$ rm result_05_original_mags_from_article_sorted.txt 

result_05_identified_chmags_sorted.txt 

Where: 

• cat merges all result files in one file.  

• rm removes intermediary files. 

• awk keeps results where the ANI is equal to or greater than 95%. 
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• sort -k1,1 -k3nr,3 sorts the results by MAG name (first column) and by ANI result (third 

column). 

• sort -k1,1 -u keeps just the better match for each MAG. This returned file contains the 

MAGs with matches against GEM database – Table 6). 

• sort sorts the files (necessary for the next command). 

• comm creates a file containing MAG identifiers without hits against the GEM database.  

• rm  removes intermediary files. 

The results obtained are shown in Table 6. 

6.8. Merging GTDB-tk and GEM comparison results  

Now that we have results from both GTDB-tk and GEM searches, we can compare these results (Table 7) 

and arrive at a classification of our MAGs in terms of SMAGs, CHMAGs, and HMAGs, as explained in 

Section 5.3. If the MAG has results in GTDB-tk against an isolate genome, it will be considered a 

SMAG. If the MAG has results only in the GEM database, it will be considered a CHMAG. MAGs 

without results will be considered HMAGs. The results are shown in Table 8. 

It is important to note that GTDB-tk results sometimes are not isolate genomes, so it is necessary to check 

at the NCBI website whether the genome that is a hit is from an isolate. To check this, open the NCBI 

website (https://www.ncbi.nlm.nih.gov/) and search for the returned reference code. As an example, the 

reference code “GCF_001544255.1” was returned by GTDB-tk as reference for the MAG “bin.1” (Table 

5). NCBI shows several data about the hit genome and it is possible to verify that it was assembled from 

type material (in other words, it is an isolate genome).  

In Table 7 we show the results of both GTDB-tk and the GEM searches (best hit only). This table shows 

that a number of our MAGs did not have any hits in the GEM database. This shows that the underlying 

genome database used by GTDB-tk is more comprehensive than GEM. On the other hand, there were two 

discrepancies among MAGs that did have hits. We now analyze each discrepancy. 

https://www.ncbi.nlm.nih.gov/
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• Bin.11: the discrepancy here can be explained by synonymy. Using the NCBI taxonomy we see 

that Pantoea calida is just a synonym for Mixta calida. 

• Bin.5: again the NCBI taxonomy, we find that Pauljensenia radingae is not a valid name, but the 

look-up produces Schaalia radingae instead; this species is a member of the Actinomycetaceae 

family. Something similar happens with the GEM hit: Actinomyces bhumii seems to be a 

synonym for Actinomyces ihuae, which is also a member of the Actinomycetaceae family. So 

which species should be assigned to Bin.5? Because GTDB-tk is a taxonomic classification 

program, and the GEM database by definition contains only MAGs, we should choose the 

GTDB-tk classification, Schaalia radingae. 

Putting these results together, we now arrive at a categorization of our MAGs according to the three 

categories mentioned previously (Table 8). We see that nearly all MAGs are SMAGs, with a few 

exceptions. This was expected, because the samples come from the human gut, possibly the best studied 

“environmental niche”. Had the samples come from (for example) soil or lake water, which are far less 

known from a microbiome perspective than the human gut, than the proportion would be reversed: most 

MAGs would be HMAGs, and only a few would be SMAGs or CHMAGs. 

6.9. Annotating MAGs with PGAP 

After obtaining and classifying MAGs, the next step is to annotate them, using PGAP. To execute the 

software, it is necessary to have three files: 

• genome_file with the FASTA sequences (contigs). 

• pgap_submol.yaml which contains additional configurations to execute PGAP. The most 

important configuration in this file is the species name. 

• pgap_metadata.yaml which contains the path of the genome file and the path of the file 

pgap_submol.yaml. 
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Here, as example we present the content required for the files to annotate the bin.1.fa, assembled in the 

previous steps. 

Example of pgap_submol.yaml file: 

organism: 

    genus_species: 'Enterococcus faecium' 

This is the minimal file possible, with just the mandatory field (the species or genus name). Additional 

fields can be filled out.  

The species or genus name needs to be a valid NCBI taxonomy name 

(https://www.ncbi.nlm.nih.gov/taxonomy). The easiest way to obtain the correct name is looking up the 

reference returned by GTDB-tk (Table 5). In the case of bin.1, the reference is GCF_001544255.1. 

Searching in the NCBI site using the reference code, it is possible to determine the species taxonomy for 

this reference.  

Example of pgap_metadata.yaml file: 

fasta: 

    class: File 

    location: bin.1.fa 

submol: 

    class: File 

    location: pgap_submol.yaml 

This file indicates the path of the other files necessary to execute PGAP. In this example, all the files are 

in the same folder. 

Command line to execute PGAP: 

https://www.ncbi.nlm.nih.gov/taxonomy
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$ pgap -r -o result/ -c 8 -m 32g --ignore-all-errors pgap_metadata.yaml 

Where: 

• -r allows PGAP to send a usage report to its server. 

• -o result/ is where the output will be saved.  

• -c 8 is the quantity of CPUs PGAP is allowed to use. 

• -m 32g is the memory size PGAP is allowed to use. 

• --ignore-all-errors indicates that PGAP should continue with the execution even if some 

errors occur.  

• pgap_metadata.yaml is a file already described in this section. 

The command above took about four hours on a server with 16 processors and 100 Gb of RAM. The 

folder result will contain the annotated genome. The file of interest is annot.gbk, which contains all 

annotated genes and the original FASTA sequences. 

6.10. Comparing and analyzing MAGs with MAGset 

To compare the genomes, we will use the software MAGset. To execute MAGset, the following files are 

necessary: 

• MAG file (annotated). 

• Reference genome file (annotated). 

• Sample data files (raw data, the source fastq files where the MAGs were obtained). 

• configuration.properties, the file with all configurations necessary to execute the 

software. 

Here we will exemplify the use of MAGset with MAG bin.1. The annotated file for this MAG was 

generated in the previous step of this section.  

To download the annotated reference genome file, we have two options: 
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First, using the datasets program, available at https://www.ncbi.nlm.nih.gov/datasets/docs/v2/download-

and-install/ and executing the following command (where GCF_001544255.1 is the code of the reference 

given by GTDB-tk for bin.1): 

$ datasets download genome accession GCF_001544255.1 --include gbff 

Alternatively, we can use the NCBI site directly, in the genome page, to download the GBFF file. 

Extract the reference genome and copy the MAG file to the same folder. As an example, we will use a 

folder with the path /work/analysis/magset/genomes. 

The configuration.properties file should be like the following example: 

title=enterococcus_faecium 

genomes_folder=/work/analysis/magset/genomes/ 

output_folder=/work/analysis/magset/ 

mag_file=bin.1.gbff 

reference_genome_files=GCF_001544255.1.gbff 

num_threads=8 

input_type=GBK 

raw_reads_folder=/work/analysis/raw_data/ 

raw_reads_files_r1=SRR3466404_1.fastq 

raw_reads_files_r2=SRR3466404_2.fastq 

Where: 

• title Is the result name for user reference, this title will be showed inside the html result. 

• genomes_folder is where genomes were saved.  

• output_folder is where the result will be saved. 

https://www.ncbi.nlm.nih.gov/datasets/docs/v2/download-and-install/
https://www.ncbi.nlm.nih.gov/datasets/docs/v2/download-and-install/
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• mag_file is the name of the MAG file, available inside the genomes_folder. Please copy the 

annotated genome obtained in Section 6.9 inside the genomes_folder using the name 

bin.1.gbff. 

• reference_genome_files is the name of the reference genome file, available inside the 

genomes_folder. Please copy the downloaded reference genome file  inside the 

genomes_folder using the name GCF_001544255.1.gbff 

• num_threads are the number of threads the software is allowed to use. 

• input_type is the genome data format we are using; in this example we are using GBK format. 

• raw_reads_folder is the folder where the sample fastq files are saved. 

• raw_reads_files_r1 is the forward fastq file we used to assemble the MAG. 

• raw_reads_files_r2 is the reverse fastq file we used to assemble the MAG. 

To execute MAGset, run the following command: 

$ /work/apps/run-magset.sh configuration.properties 

Please note that, in the command above, it is assumed that MAGset was installed in folder 

/work/apps/. After the end of the execution, inside the folder result/html, open the file 

index.html with a browser, and it will be possible to analyze the result of the comparison between the 

MAG and the reference genome (Figure 2). The first page is a summary report, showing: 

• The pangenome of the genomes (specific and shared genes). 

• Genomic regions of interest (regions that exist in one genome and doesn’t exist in the other). 

• ANI result between the genomes. 

• List of Genomic regions of interest that could be available inside the sample data (raw data). 

• Annotations summary (CAZY and COG annotations). 
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We now briefly discuss the results generated by MAGset. As seen in Table 5, our MAG (bin.1) was 

classified by GTDB-tk as Enterococcus faecium. The reference genome is GCF_001544255.1. Their 

similarity in terms of ANI is given as 99.32% (see frame “Comparison between genomes using ANI”); 

this value is consistent with the taxonomic classification. Note however that the sizes of the two genomes 

are substantially different: The reference genome has 2,484,851 bp, whereas our MAG has 2,071,822 bp, 

a difference greater than 400 kbp. To some extent this is expected, because MAGs almost always are 

incomplete. Indeed, Table 3 shows that CheckM estimates that bin.1 is 95.2% complete. If we were to use 

the reference genome’s size as the true length of the genome from which our MAG corresponds, then its 

completeness would be only 83.4%, suggesting that CheckM’s value may be an underestimate.  

Frame “Genomic Region of Interest (GRI) Summary” shows that 27 negative GRIs were found in 

GCF_001544255.1 and only two in bin.1. This large difference is again suggestive of the incompleteness 

of bin.1. Indeed, as will be seen in the next section, many of these 27 negative GRIs can actually be found 

in the raw data. On the other hand, the two positive GRIs may contain valuable information about genes 

that are specific to the strain that was retrieved from this metagenome dataset. Using the search 

mechanism provided by MAGset, the user get detailed information on the gene contents of these two 

regions. In this particular case, one of the genes in one of these regions is annotated as coding for a group 

II intron reverse transcriptase/maturase, which is evidence that the GRI was the result of some genome 

insertion event, consistent with its absence from the reference genome. 

6.11. Running MAGcheck 
 

We use the MAGcheck module to verify whether negative GRIs of the MAG can be found in the 

metagenome dataset that we started with. This module is automatically executed when MAGset is 

executed by providing a file with the reads that were used to generate the MAG, as we did in the previous 

step (parameters  raw_reads_folder, raw_reads_files_r1 and raw_reads_files_r2 in the 
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configuration.properties file). The results are output in the same HTML page where the MAGset 

results are presented, as menu item “GRIs list”), or as a CSV file (result/csv/gri_list.csv).  

For our example, we show the results in Table 9. Of the 27 negative GRIs, MAGcheck was able to find 

16. This suggests that binning of this metagenome dataset could be improved. If a user is particularly 

interested in refining the assembly of a MAG, the reads that correspond to the negative GRIs that were 

found in the raw data can be extracted, along with the reads that went into the original assembly of this 

MAG, and a new assembly can be attempted. It is our experience that the assemblies of specific MAGs 

can indeed be improved in this way. By improvement we mean that size and completeness generally 

increase, while there may be a slight increase in contamination (as determined by checkM). 

7. Conclusion 

This chapter is an introduction to the concept of a Metagenome-Assembled Genome and the methods for 

obtaining and analyzing MAGs, and comparing them to other genomes, especially isolate genomes. 

Methods are continually improving, and new programs for some of the steps described here are constantly 

being developed and published. Nevertheless, we believe the analysis framework here presented will be 

valid for some years. When new analysis programs become available, users should still be able to apply 

this same framework, replacing the particular method described here by a newer one.  
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Figure 1. Summary view of MAG generation and analysis steps. 

Figure 2. MAGset screen, showing result comparing one MAG and one reference genome. 

Tables 

Table 1. The MIMAG Standard for MAG quality. Adapted from Bowers et al. (2017) 

category Assembly quality completion contamination 
Finished Single contiguous sequence without gaps 

or ambiguities with a consensus error rate 
equivalent to Q50 or better 

100% zero 

High-quality draft Multiple fragments where gaps span 
repetitive regions. Presence of the 23S, 
16S, and 5S rRNA genes and at least 18 
tRNAs 

> 90% < 5% 

Medium-quality draft Many fragments with little to no review of 
assembly other than reporting of standard 
assembly statistics. 

> 50% < 10% 

Low-quality draft Many fragments with little to no review of 
assembly other than reporting of standard 
assembly statistics 

< 50% < 10% 

 

Table 2. Programs used in the example. 

Name Version used in 

this chapter 

Download URL 

SRA 

Toolkit 

3.0.0 https://github.com/ncbi/sra-tools/wiki/01.-

Downloading-SRA-Toolkit 

Metawrap 1.3.0 https://github.com/bxlab/metaWRAP 

GTDB-k 2.1.1 https://github.com/Ecogenomics/GTDBTk. 

fastANI 1.33 https://github.com/ParBLiSS/FastANI 

PGAP 2022-12-

13.build6494 

https://github.com/ncbi/pgap 

MAGset 1.5.0 https://github.com/LaboratorioBioinformatica/MAGset 

https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit
https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit
https://github.com/bxlab/metaWRAP
https://github.com/Ecogenomics/GTDBTk
https://github.com/ParBLiSS/FastANI
https://github.com/ncbi/pgap
https://github.com/LaboratorioBioinformatica/MAGset
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Table 3. MAGs obtained. 

ID Completeness 

(%) 

Contamination 

(%) 

N50 (bp) Size (bp) 

bin.1 95.20 1.19        9,277           2,071,822  

bin.10 99.05 0.59    248,623           2,154,473  

bin.11 98.71 0.46    151,207           4,092,388  

bin.12 97.60 0.75    129,685           1,987,272  

bin.13 96.45 1.74      15,654           2,110,144  

bin.14 60.34 0.00    197,721           2,272,956  

bin.15 97.12 0.60      97,498           5,098,176  

bin.16 94.57 0.08    132,720           2,615,966  

bin.17 98.87 0.00    117,227           2,752,442  

bin.18 64.27 0.20    116,114           2,943,683  

bin.19 97.58 1.81      55,583           3,330,466  

bin.2 88.70 0.00      89,992           4,430,022  

bin.20 82.85 1.32        4,748           5,912,272  

bin.21 66.12 0.81    129,447           1,854,467  

bin.22 96.78 0.13      87,935           2,325,206  

bin.23 51.61 0.81    135,731           1,899,461  

bin.24 90.29 2.30        5,036           2,126,201  

bin.25 99.25 0.75    202,714           3,250,245  

bin.26 94.15 0.15    229,507           2,253,828  

bin.27 75.86 0.00      35,240           2,789,627  
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bin.28 51.07 4.27        1,815           2,202,426  

bin.3 97.58 3.49      16,046           2,320,520  

bin.4 55.08 1.64        2,084           1,517,918  

bin.5 99.28 0.95    248,309           2,404,125  

bin.6 99.90 2.03      99,790           3,855,070  

bin.7 94.26 0.81        5,777           1,503,206  

bin.8 100.00 0.00    237,187           2,485,664  

bin.9 100.00 0.00    101,443           1,806,569  

 

Table 4. Information about contigs 

 All contigs of the assembly Contigs not included in MAGs 

Number of contigs 9,029 2,718 

Length of shortest contig (bp) 1,000 1,000 

Length of longest contig (bp) 674,977 478,425 

Average length of contigs (bp) 9,687.58 4,084.82 

Total size (bp) 87,469,161 11,102,546 

N50 (bp) 64,981 8,610 

L50 (bp) 301 195 

% GC 43.51 41.34 

 

Table 5. Taxonomic classification using GTDB-tk.  

ID Classification 
level 

Classification Reference ANI 
Reference 

(%) 
bin.1 Species s__Enterococcus_B faecium GCF_001544255.1 99.32 

bin.2 Species s__Clostridium butyricum GCF_006742065.1 98.85 

bin.3 Species s__Staphylococcus epidermidis GCF_006742205.1 98.95 
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bin.4 Species s__Cutibacterium acnes GCF_003030305.1 99.1 

bin.5 Species s__Pauljensenia radingae_A GCA_900106055.1 98.94 

bin.6 Species s__Anaerosporomusa sp900542835 GCA_900542835.1 99.97 

bin.7 Species s__Atopobium minutum GCF_001437015.1 99.83 

bin.8 Species s__Cutibacterium avidum GCF_000227295.1 99.08 

bin.9 Species s__Streptococcus lutetiensis GCF_900475675.1 99.11 

bin.10 Species s__Varibaculum cambriense_A GCA_000508625.1 97.46 

bin.11 Species s__Mixta calida GCF_002953215.1 99.48 

bin.12 Species s__Veillonella parvula_A GCF_902810435.1 96.92 

bin.13 Species s__Agathobacter rectalis GCA_000020605.1 97.14 

bin.14 Species s__Clostridium baratii GCF_000789395.1 98.71 

bin.15 Species s__Klebsiella pneumoniae GCF_000742135.1 99.07 

bin.16 Species s__Staphylococcus aureus GCF_001027105.1 99.81 

bin.17 Species s__Enterococcus faecalis GCF_000392875.1 98,9 

bin.18 Species s__Escherichia coli GCF_003697165.2 96.76 

bin.19 Species s__Clostridium_X cadaveris GCF_000424205.1 99.71 

bin.20 Genus g__Hungatella N/A N/A 

bin.21 Genus g__Clostridium N/A N/A 

bin.22 Species s__Staphylococcus warneri GCF_900636385.1 99.6 

bin.23 Species s__Clostridium paraputrificum GCF_900447045.1 95.4 

bin.24 Species s__Corynebacterium 

aurimucosum_E 

GCF_016127015.1 97.13 

bin.25 Species s__Enterococcus_D gallinarum GCF_001544275.1 97.58 

bin.26 Species s__Dermabacter hominis GCF_001570785.1 96.02 

bin.27 Species s__Clostridium sp900547475 GCA_900547475.1 95,18 
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bin.28 Genus g__Clostridioides N/A N/A 

 

Table 6.  Best hits for MAGs against the GEM database. The columns “Length”, “Contigs”, 

“Completeness”, “Contamin.” and “Quality” was obtained from 

https://portal.nersc.gov/GEM/genomes/genome_metadata.tsv  

MAG GEM best hit ANI Length 

(Mbp) 

Contigs Completeness Contamin. Quality 

bin.1 3300029065_2 99.28 2.87 90 99.63 0 MQ 

bin.3 3300013570_1 98.99 2.39 34 99.25 0 MQ 

bin.4 3300006215_1 99.13 2.47 13 98.94 0.03 MQ 

bin.5 3300014916_9 99.02 2.05 204 87.31 2.23 MQ 

bin.8 3300013226_1 96.06 2.46 105 99.01 0.33 MQ 

bin.9 3300010283_34 99.23 0.98 25 59.18 0 MQ 

bin.10 3300029005_8 97.49 2.10 40 98.82 0.83 HQ 

bin.11 3300014642_2 99.62 4.15 33 99.3 0.46 HQ 

bin.12 3300006255_16 97.18 1.03 150 63.81 1.42 MQ 

bin.13 3300008404_12 98.24 2.50 48 99.03 1.69 MQ 

bin.15 3300011751_3 99.19 4.92 40 95.54 0.57 MQ 

bin.16 3300007865_1 97.95 2.02 28 75.77 0.08 MQ 

bin.17 3300014970_8 99.86 2.87 43 99.63 0 HQ 

bin.18 3300029613_8 99.19 4.69 69 99.62 0.21 HQ 

https://portal.nersc.gov/GEM/genomes/genome_metadata.tsv
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bin.22 3300027028_14 99.88 2.33 46 98.83 0.08 MQ 

bin.23 3300014583_1 97.62 3.66 111 95.97 1.81 MQ 

bin.24 3300012579_3 97.31 2.16 135 97.43 1.32 MQ 

bin.25 3300014531_12 99.73 2.13 32 69.81 0 MQ 

 

Table 7. Comparison between GTDB-tk classification and GEM best hit classification. Highlighted in 

gray are the MAGs in which the GTDB-tk classification at the species level does not match the GEM best 

hit. 

MAG GTDB-tk Classification  GEM best hit classification 

bin.1 s__Enterococcus_B faecium s__Enterococcus_B faecium 

bin.2 s__Clostridium butyricum N/A 

bin.3 s__Staphylococcus epidermidis s__Staphylococcus epidermidis 

bin.4 s__Cutibacterium acnes s__Cutibacterium acnes 

bin.5 s__Pauljensenia radingae_A s__Actinomyces bhumii 

bin.6 s__Anaerosporomusa sp900542835 N/A 

bin.7 s__Atopobium minutum N/A 

bin.8 s__Cutibacterium avidum s__Cutibacterium avidum_A 

bin.9 s__Streptococcus lutetiensis s__Streptococcus lutetiensis 

bin.10 s__Varibaculum cambriense_A s__Varibaculum cambriense_A 

bin.11 s__Mixta calida s__Pantoea_B calida 

bin.12 s__Veillonella parvula_A s__Veillonella parvula 

bin.13 s__Agathobacter rectalis s__Agathobacter rectalis 

bin.14 s__Clostridium baratii N/A 

bin.15 s__Klebsiella pneumoniae s__Klebsiella pneumoniae 

bin.16 s__Staphylococcus aureus s__Staphylococcus aureus 

bin.17 s__Enterococcus faecalis s__Enterococcus faecalis 

bin.18 s__Escherichia coli s__Escherichia coli 

bin.19 s__Clostridium_X cadaveris N/A 
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bin.20 g__Hungatella N/A 

bin.21 g__Clostridium N/A 

bin.22 s__Staphylococcus warneri s__Staphylococcus warneri 

bin.23 s__Clostridium paraputrificum s__Clostridium paraputrificum_A 

bin.24 s__Corynebacterium aurimucosum_E s__Corynebacterium tuberculostearicum 

bin.25 s__Enterococcus_D gallinarum s__Enterococcus_D gallinarum 

bin.26 s__Dermabacter hominis N/A 

bin.27 s__Clostridium sp900547475 N/A 

bin.28 g__Clostridioides N/A 

 

Table 8. Categorization of MAGs.  

MAG Found in GEM Database? Found in GTDB-tk? Category 

bin.1 Yes Yes SMAG 

bin.2 No Yes SMAG 

bin.3 Yes Yes SMAG 

bin.4 Yes Yes SMAG 

bin.5 Yes Yes SMAG 

bin.6 No Yes (MAG) CHMAG 

bin.7 No Yes SMAG 

bin.8 Yes Yes SMAG 

bin.9 Yes Yes SMAG 

bin.10 Yes Yes (MAG) CHMAG 

bin.11 Yes Yes SMAG 

bin.12 Yes Yes SMAG 

bin.13 Yes Yes SMAG 

bin.14 No Yes SMAG 
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bin.15 Yes Yes SMAG 

bin.16 Yes Yes SMAG 

bin.17 Yes Yes SMAG 

bin.18 Yes Yes SMAG 

bin.19 No Yes SMAG 

bin.20 No No HMAG 

bin.21 No No HMAG 

bin.22 Yes Yes SMAG 

bin.23 Yes Yes SMAG 

bin.24 Yes Yes SMAG 

bin.25 Yes Yes SMAG 

bin.26 No Yes SMAG 

bin.27 No Yes (MAG) CHMAG 

bin.28 No No HMAG 

 

Table 9. Negative genomic regions of interest (NGRI). Yellow lines indicate the NGRI was found by 

MAGcheck in the raw data. 

Id Size 

(bp) 

Genes 

Qty 

Covered 

positions (%) 

Found by 

MAGcheck 

NGRI0001_01 8,344 5 99.99 true 

NGRI0002_01 6,320 5 97.58 true 

NGRI0003_01 11,570 13 66.93 false 

NGRI0004_01 11,392 13 98.62 true 

NGRI0005_01 17,111 30 100.00 true 
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NGRI0006_01 7,323 8 99.92 true 

NGRI0007_01 7,926 5 79.98 false 

NGRI0008_01 32,109 51 53.27 false 

NGRI0009_01 5,018 7 99.78 true 

NGRI0010_01 11,616 14 98.95 true 

NGRI0011_01 16,865 14 24.67 false 

NGRI0012_01 20,850 22 22.16 false 

NGRI0013_01 13,722 17 57.10 false 

NGRI0014_01 7,043 6 1.43 false 

NGRI0015_01 5,205 9 99.83 true 

NGRI0016_01 27,208 36 67.99 false 

NGRI0017_01 6,286 10 100.00 true 

NGRI0018_01 5,671 9 99.93 true 

NGRI0019_01 9,194 7 98.81 true 

NGRI0020_01 6,387 6 30.23 false 

NGRI0021_01 10,915 11 52.67 false 

NGRI0022_01 13,914 13 98.77 true 

NGRI0023_01 5,243 5 99.64 true 

NGRI0024_01 6,773 23 99.84 true 

NGRI0025_01 22,037 36 93.32 true 

NGRI0026_01 19,034 17 99.42 true 

NGRI0027_01 11,274 13 20.76 false 

 


	Abstract
	1. Introduction
	2. How MAGs can be obtained
	3. Quality checking
	3.1. Completeness and contamination
	3.2. MAG quality standards

	4. MAG annotation
	5. MAG comparative analysis
	5.1. MAG pairwise comparison
	5.2. MAG databases
	5.3. Taxonomic classification
	5.4. MAGset and MAGcheck

	6. Practical example
	6.1. Assumptions
	6.2. Sample description
	6.3. Downloading the data
	6.4. Preprocessing
	6.5. MAG Assembly pipeline
	6.6. Taxonomic classification
	6.7. Searching MAGs against the GEM database
	6.8. Merging GTDB-tk and GEM comparison results
	6.9. Annotating MAGs with PGAP
	6.10. Comparing and analyzing MAGs with MAGset
	6.11. Running MAGcheck

	7. Conclusion
	8. References

