Cromatografia de Camada Delgada - CCD

Thin Layer Chromatography - TLC

Princípio CCD: partição de um soluto entre duas fases (como na extração) sendo uma estacionária e uma móvel; o equilíbrio é constantemente deslocado pela fase móvel e os solutos são separados pelas diferenças de mobilidade impregnada em placa de vidro ou alumínio

fase móvel (solvente) movido pelo efeito capilar pela placa

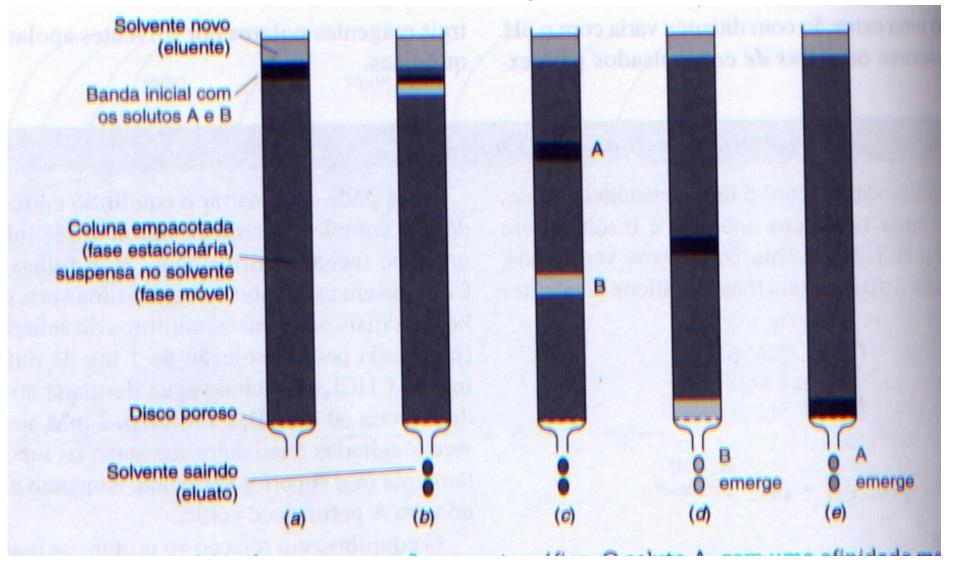
Cromatografia: Procedimento para a purificação de substâncias utilizando-se

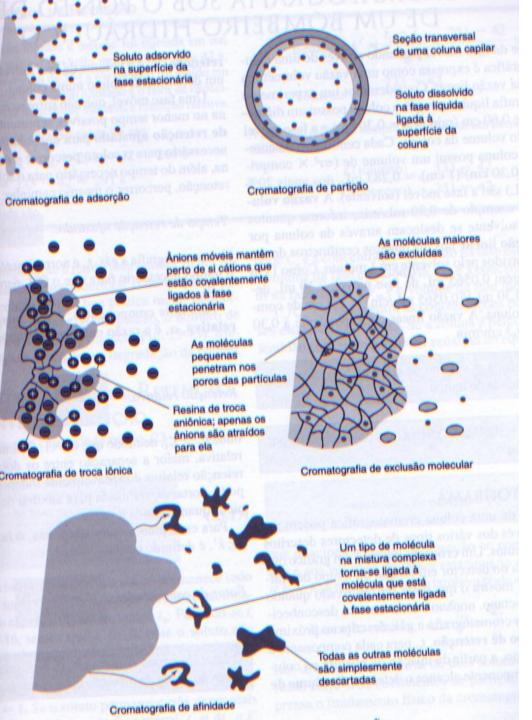
uma Fase Estacionária e uma Fase Móvel

Cromatografia Gasosa; Cromatografia de Coluna; Cromatografia Líquida de Média Pressão; Cromatografia de Alta Eficiência (CLAE - HPLC e U(H)PLC); Cromatografia de Camada Delgada (CCD); Cromatografia de Papel; etc.

Cromatografia

Procedimento para a purificação de substâncias utilizandose uma Fase Estacionária e uma Fase Móvel


Princípio: partição de um soluto entre duas fases (como na extração) sendo uma estacionária e uma móvel; o equilíbrio é constantemente restaurado pela fase móvel e os solutos são separados pelas diferenças de mobilidade total.

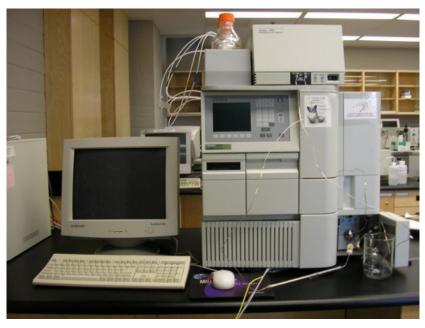

$$S_{adsorvido} \longrightarrow S_{dissolvido}$$

$$P \approx [Sd] / [Sa]$$

quanto maior P maior a mobilidade no sistema.

imagine um tubo de vidro contendo sílica ("areia") segura por um pouco de lã de vidro na saída; a sílica está imersa num solvente; colocando uma mistura de A e B no topo da coluna e criando-se um fluxo constante de solvente (abrindo-se a saída e adicionando-se no topo) observa-se a separação: A é mais adsorvido que B

vários tipos de interação definem as várias cromatografias:

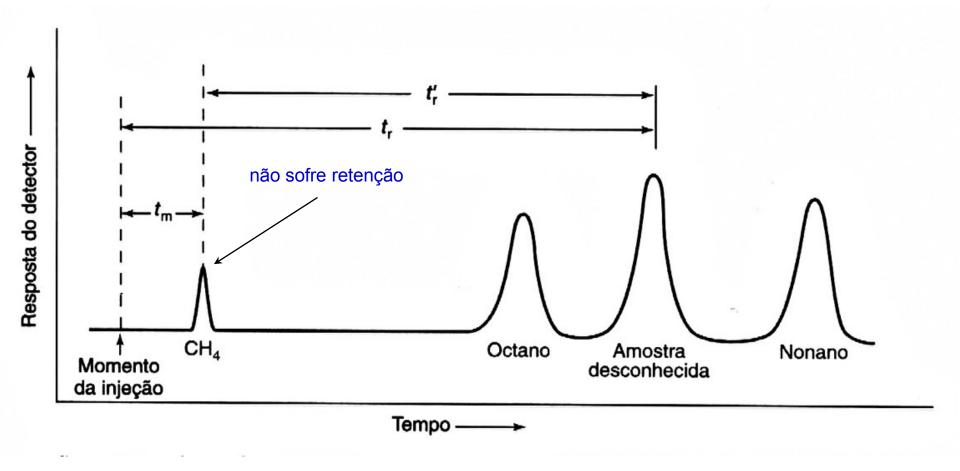

adsorção (interação intermolecular com a superfície de um sólido)

partição: soluto particiona entre a fase gasosa e líquida (molhando a superfície da coluna)

troca iônica: polímero contendo cátions covalentemente ligados atraem os ânions da soluçnao

exclusão molecular: porosidade de tamanho controlado

afinidade: interação intermolecular (ligação química às vezes) muito específica com molécula na fase móvel



HPLC

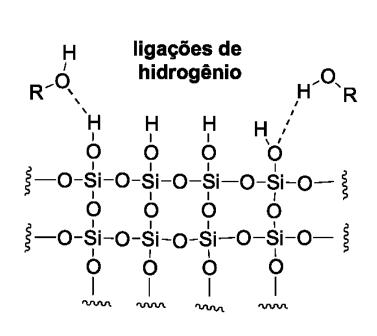
CG

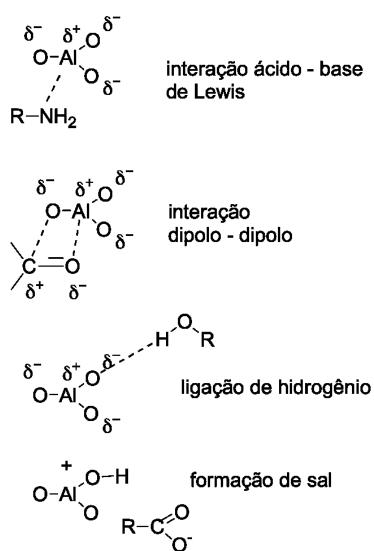
CROMATOGRAMA => medida do coeficiente de partição P

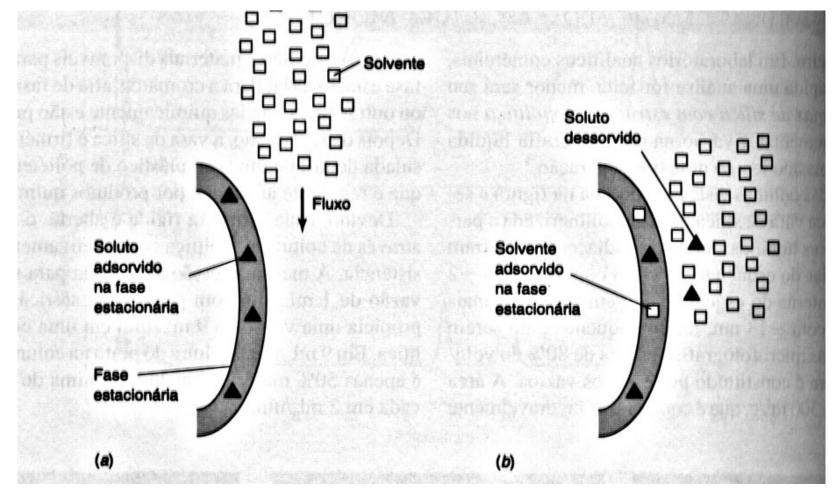
$$k' = (t_r - t_m) / t_m$$

fator de retenção ou fator de capacidade é igual à razão molar entre as fases estacionária e móvel!

k' = nestacionária / nmóvel então Partição = k' Vmóvel/Vestácionaria6


Fase Estacionária: normalmente consideravelmente polar; sílica gel (SiO₂) e óxido de alumínio (Al₂O₃) são as fases mais utilizadas;


Papel Celulose **Amido** Açucares Silicato de magnésio Sulfato de cálcio Ácido Silícico Silicagel **Florisil** Óxido de Magnésio Óxido de alumínio (alumina) (ácido, neutro, básico) Carvão ativado


Aumento da intensidade de interação (ligações) com compostos polares

Princípio da Separação Cromatográfica

Interações moleculares entre substâncias e as fases estacionárias mais utilizadas silicagel e óxido de alumínio:

O solvente desloca o soluto da superfície!

Substâncias mais polares: mais adsorvido (ficam 'presos' à fase estacionária). Substâncias menos polares são mais facilmente eluidas.

Solventes mais polares eluem melhor todas as substâncias; efeito mais pronunciado no caso de substâncias polares.

TABELA 25.2 SÉRIE ELUOTRÓPICA E COMPRIMENTOS DE ONDA DE CORTE NO ULTRAVIOLETA PARA SOLVENTES USADOS NA CROMATOGRAFIA DE ADSORÇÃO SOBRE SÍLICA

Solvente	Força eluente (€°)	Corte no ultravioleta (nm)
Pentano	0,00	190
Hexano	0,01	195
Heptano	0,01	200
Triclorotrifluoroetano	0,02	231
Tolueno	0,22	284
Clorofórmio	0,26	245
Diclorometano	0,30	233
Éter dietílico	0,43	215
Acetato de etila	0,48	256
Éter metil t-butílico	0,48	210
Dioxano	0,51	215
Acetonitrila	0,52	190
Acetona	0,53	330
Tetraidrofurano	0,53	212
2-propanol	0,60	205
Metanol	0,70	205

O corte no ultravioleta para a água é 190 nm.

FONTES: L. R. Snyder, in *High-Performance Liquid Chromatography* (C. Horváth, ed.), Vol. 3 (New York: Academic Press, 1983); *Burdick & Jackson Solvent Guide*, 3rd ed. (Muskegon, MI: Burdick & Jackson Laboratories, 1990).

Sequência elotrópica de solventes para cromatografia:

Hidrocarbonetos (éter de petróleo, hexano, ciclo-hexano) CCI₄ Tolueno CHCl₃ CH₂Cl₂ Éter etílico Acetato de etila Acetonitrila Acetona Piridina Alcoois (metanol, etanol, etc.) Agua

Ácido acético

Aumento da polaridade do solvente, maior interação com grupos funcionais polares

O solvente mais polar elui melhor substâncias polares por melhor dissolve-los e deslocar o equilíbrio de eluição (K_{elui}); além disso, o solvente mais polar adsorve melhor à superfície da fase estacionária, deslocando desta maneira todas as substâncias para a fase líquida.

Princípio da Separação Cromatográfica

Ordem de eluição de classes de substâncias:

Hidrocarbonetos

Alcenos (Olefinas) e Alcinos

Éteres

Haletos de Alquila

Compostos Aromáticos

Cetonas e Aldeídos

Ésteres

Álcoois e Aminas

Acidos Carboxílicos e bases fortes Formação de Sais

Interações van der Waals

Dipolo induzido

Dipolo

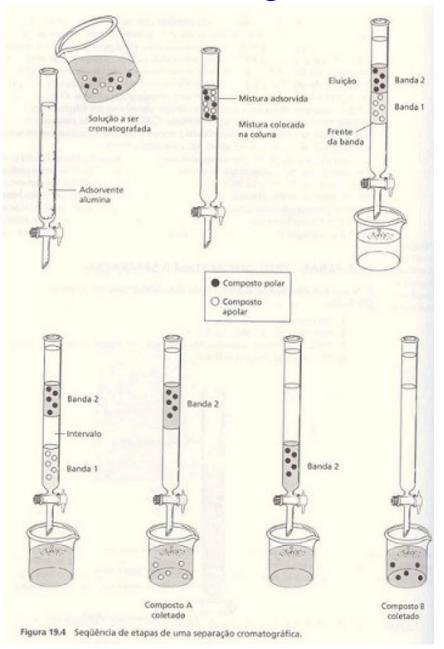
Dipolo

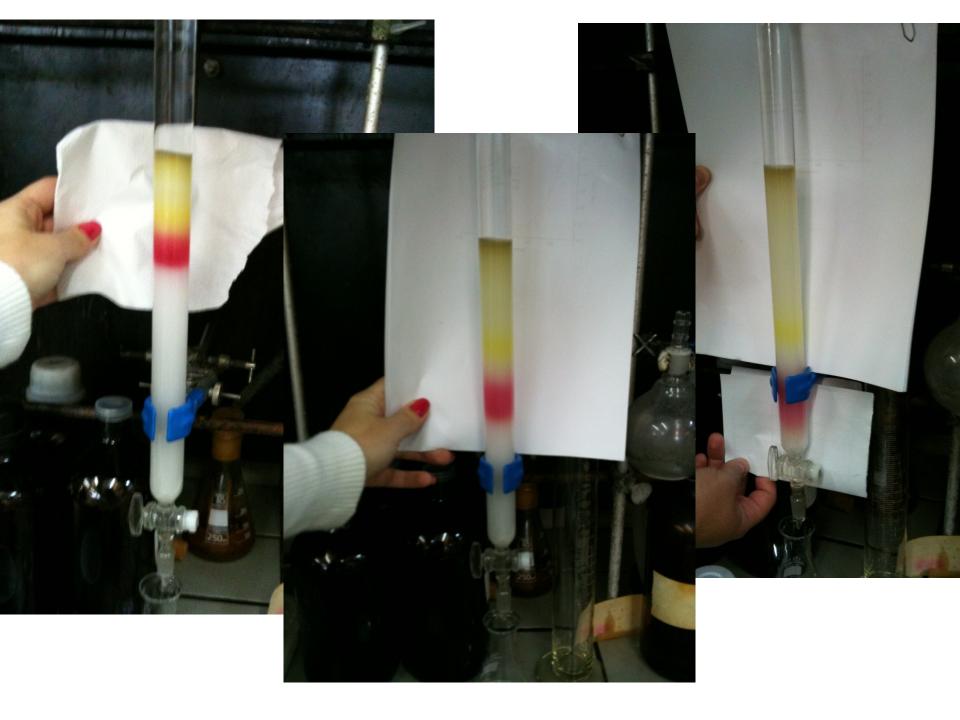
Dipolo Induzido

Dipolo, (ligações de hidrogênio)

Dipolo, (ligações de hidrogênio)

Ligações de hidrogênio

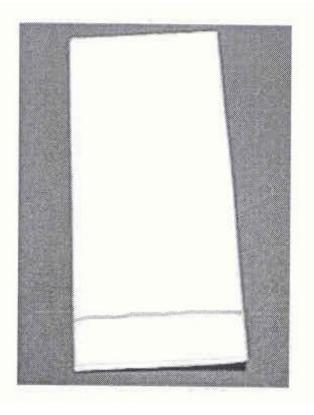

Ordem de eluição

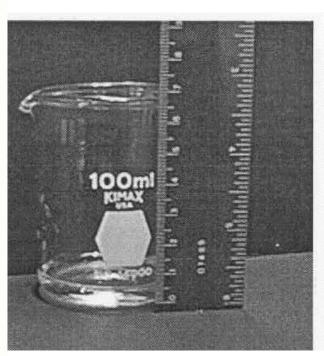

Substâncias apolares eluem mais rapidamente que substâncias polares porque os compostos polares possuem maiores interações com a fase estacionária (polar).

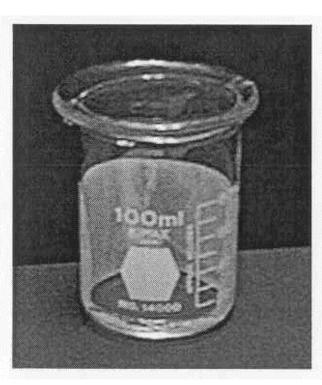
Além disso, substâncias com maior peso molecular (e a mesma polaridade) eluem mais lentamente que os análogos menores (menores interações Van der Waals).

Substâncias mais polares necessitam de solventes polares para serem eluídas, substâncias apolares eluem também com solventes menos polares.

Princípio da Cromatografia em Coluna

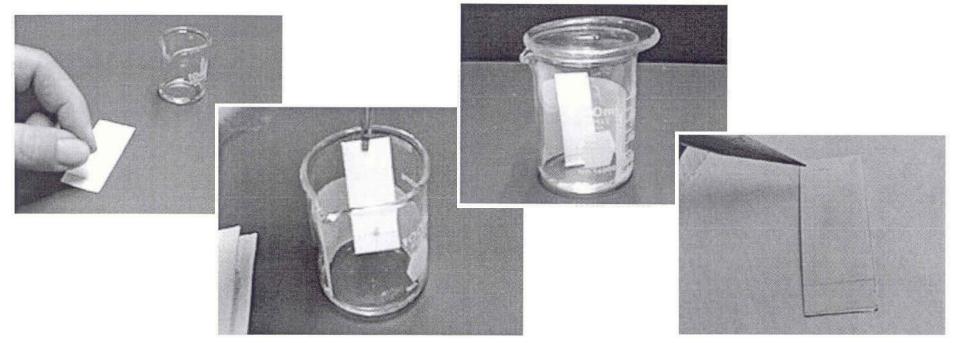

Princípio da Cromatografia em Camada Delgada - CCD

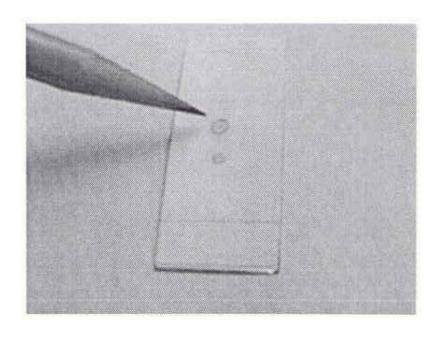


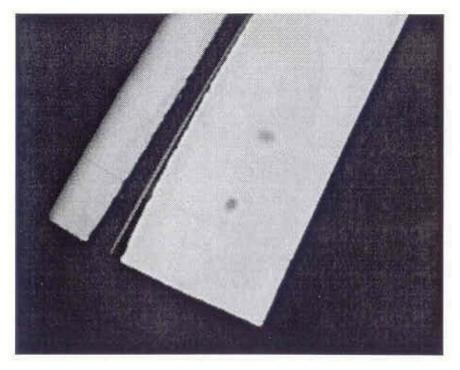

Figura 20.4 Câmara de desenvolvimento com uma placa de cromatografia em camada fina.

Como efetuar o experimento:

- 1. Preparo da Placa: Linha horizontal cerca 1 cm da borda com LÁPIS
- 2. Preparo da câmera de revelação: escolher béquer adequado com tampa de vidro de relógio; forrar parcialmente com papel de filtro (saturar ambiente com vapor de solvente); colocar o solvente (altura ~0,5 cm), tampar o béquer e deixar equilibrar (15 min).

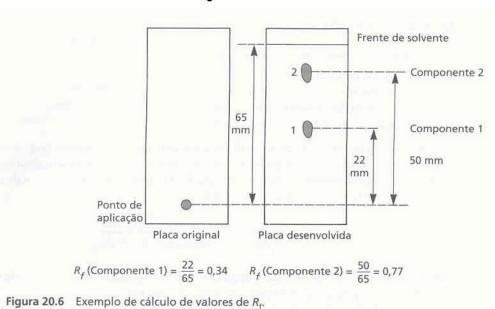



Como efetuar o experimento:


- Aplicar amostra dissolvida na linha da placa usando-se capilar: tocar rapidamente o capilar com amostra (evitar manchas grandes); se for o caso fazer várias aplicações no mesmo ponto; identificar as manchas com LÁPIS;
- Efetuar o desenvolvimento (revelação) da placa na câmera: colocar a placa (pinça) na câmera de desenvolvimento (sem tocar com dedo); solvente deve ficar abaixo da linha da aplicação; deixar solvente subir até 0,5 cm abaixo do limite da placa; retirar a placa (pinça) e marcar frente do solvente.

Como efetuar o experimento:

- Visualizar as manchas: deixar secar a placa (pistola de ar se for necessário); marcar as manchas coloridas (LÁPIS); visualizar manchas com lâmpada UV ou outro Método de Visualização.
- Calcular os valores de R_f.

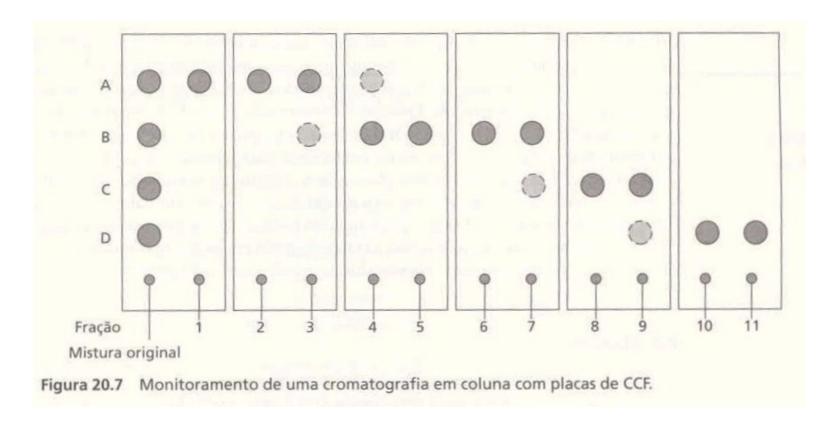


Relatar o Resultado de um CCD: O valor de R_f

R_f: "ratio to front"

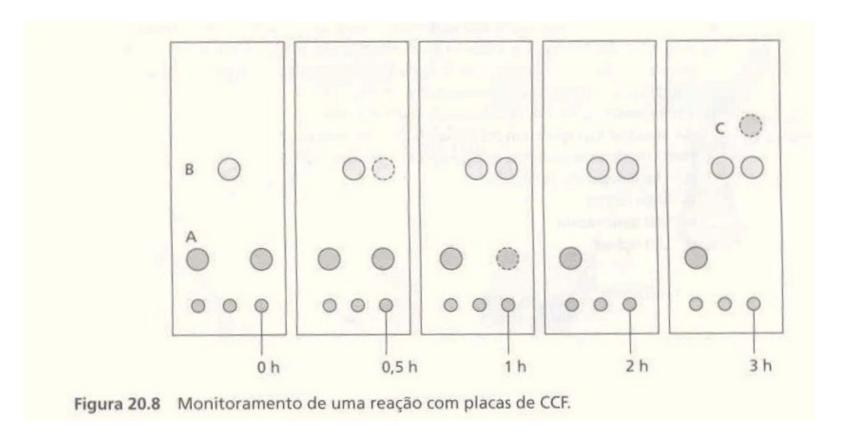
$$R_f = \frac{distância\ percorrida\ pela\ substância}{frente\ do\ solvente}$$

O valor de Rf é um parâmetro físico da substância e pode ser utilizado para sua identificação caso se mantém constante os seguintes condições:


> solvente ou mistura de solventes; fase estacionária (silicagel ou óxido de alumínio); condições ambientais (temperatura etc.) espessura da camada e quantidade de amostra aplicada.

Métodos de visualização da manchas:

- Utilizando-se lâmpada UV (254 e 365 nm):
 Visualiza substâncias fluorescentes (placa sem indicador) ou que seqüestram a fluorescência (placa com indicador fluorescente).
- Utilizando-se câmara de iodo:
 lodo reage com muitos compostos orgânicos, formando complexos, e levando a manchas amarelas até marrons.
- Métodos específicos para detecção de grupos funcionais (métodos destrutivos):
 - (i) ácido sulfúrico concentrada e aquecimento (manchas pretas);
 - (ii) nitrato de prata para visualizar haletos de alquila (manchas escuras de prata da decomposição dos compostos de prata formados);
 - (iii) formação de 2,4-dinitrofenil hidrazonas a partir de compostos carbonílicos (coloração amarela ou alaranjada);
 - (iv) cloreto férrico (FeCl₂) leva a complexos coloridos com fenóis;
 - (v) ácidos podem ser visualizados com indicadores de pH como verde de bromocresol;
 - (vi) compostos facilmente oxidados podem ser visualizados com oxidantes coloridos como CrO₃ ou KMnO₄;
 - (vii) detecção de aminas com p-dimetilamino-benzaldeído e de aminoácidos com ninidrina.


Utilização em Química Orgânica:

- Determinar o número de componentes de uma mistura;
- Determinar o solvente (ou mistura) ideal para efetuar separação em coluna cromatográfica;
- Monitorar a separação durante a cromatografia em coluna;

Utilização em Química Orgânica:

- Estabelecer se dois compostos são idênticos;
- Verificar eficiência de processos de purificação (cromatografia, recristalização, extração, etc.);
- Monitorar o progresso de uma reação.

Execução da Parte Experimental:

1. Ffeito do Fluente:

usar 3 placas pequenas!

Verificar a influência da polaridade do eluente sobre a CCD de antraceno (AT) e trifenilmetanol (TM).

Desenvolver placas de CCD com AT e TM usando-se ciclo-hexano, tolueno e diclorometano como eluentes. Determinar os valores de R_f.

2. Efeito da Estrutura da Substância: usar a placa grande!

Verificar o efeito da estrutura do composto (grupos funcionais) sobre o comportamento dele na CCD utilizando-se diclorometano como eluente.

Substâncias:

benzaldeído (BZ)

álcool benzílico (AB)

ácido acetilsalicílico (AA)

antraceno (AT)

trifenilmetanol (TM)

Desenvolver a placa de CCD (grande) com diclorometano como eluente e determinar os valores de R_f das substâncias.

3. Identificar uma mistura de substâncias pelos valores de Rf na CCD com diclorometano. usar uma placa pequena!

Materiais:

```
3 béquer 100 mL para placas pequenas;

1 béquer 250 mL para a placa grande;

4 vidros de relógio;

tiras de papel de filtro;

vários capilares;

solventes ciclo-hexano, tolueno e diclorometano na capela;

soluções das 5 substâncias em diclorometano (uma estante por

bancada);

solução da amostra problema (com indicação do armário);
```

Placas de cromatografia CCD com SiO₂ como fase estacionária e indicador de fluorescência, cortados em dois tamanhos;

Pistola de ar quente e lâmpada de UV

Relatório:

Calcular os valores de R_f para AT e TM nos diferentes eluentes e discutir os resultados obtidos.

Calcular os valores de R_f para os vários compostos obtidos na CCD em diclorometano e discutir os resultados obtidos considerando-se as propriedades (polaridade) dos compostos.

Calcular os valores de R_f obtidos para a amostra problema e identificar a(s) substância(s) contida(s), com base na comparação dos valores com os anteriormente determinados. Usar na atribuição também "outras" observações (impurezas). Discuta!