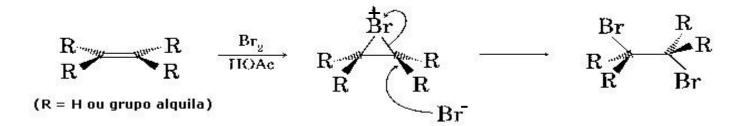
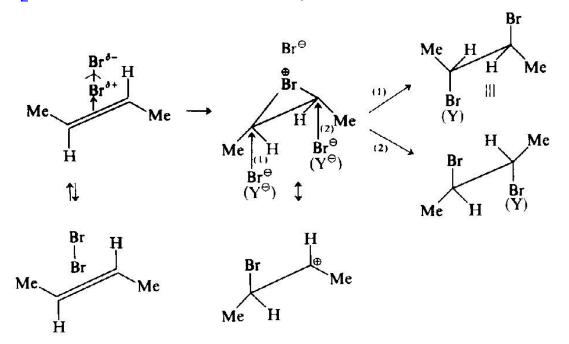

Reações de Adição Polar e Radicalar

Adição Eletrofílica e Nucleofílica a Duplas e Triplas Ligações


1. Adição de Halogênios

As questões mecanísticas importantes são: (i) a natureza do intermediário formado, (ii) a estereoquímica de adição, **sin** ou **anti**; (iii) a regioseletividade.


Detalhes Mecanísticos:

A formação de íon bromônio cíclico foi sugerido para explicar a estereoquímica anti da maioria das reações:

Evidências para este mecanismo:

(i) Adição de Br₂ à *cis-* e *trans*-2-buteno produz 2,3-dibromobutano racemico e meso.

2

(ii) A reação de *eritro-* e de *treo-*3-bromo-2-butanol com HBr produz 2,3-dibromobutano, **meso e racemico**, respectivamente.

A estereoquímica está de acordo com um deslocamento da água pelo Br- por S_N2?

Participação do bromo como grupo vizinho na saída de água, formando o íon bromônio cíclico, proposto para a reação de adição de bromo.

meso

Reação Estéreo-específica:

 reação, na qual reagentes estéreo-quimicamente diferentes levam a produtos diferentes;

Ou: um reagente com determinada estereoquímica fornece, preferencialmente, ou exclusivamente, um produto com estereoquímica definida (chamada de X % estéreo-específica).

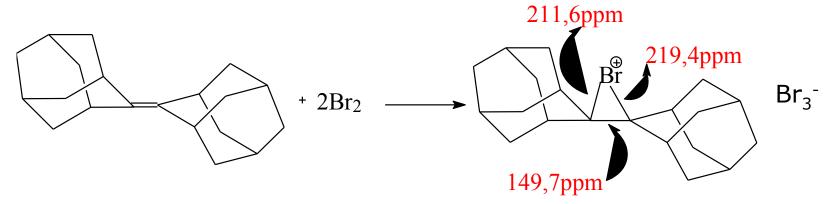
Exemplos: adição de bromo a *cis*-2-buteno e *trans*-2-buteno; reação S_N2;

Reação Estéreo-seletiva:

 reação, na qual, a partir de um reagente não definido estereoquimicamente, um estéreo-isômero (ou par de enantiômeros) é formado com velocidade (cinética) maior, ou em maior quantidade, (equilíbrio termodinâmico) que outros possíveis produtos estéreo-isômeros.

Exemplo: formação preferencial de *trans*-2-buteno, e não *cis*-2-buteno, a partir de (R) ou de (S) 2-bromobutano

Confusão: uso de "estéreo-seletiva" para uma reação "estéreo-específica" com uma especificidade menor que 100%, embora a IUPAC permita esta terminologia, ela não recomenda; (nem eu!!!)


(iii) A reação de alcinos ocorre com estereoquímica similar

(iv) O intermediário pode ser *desviado* para vários produtos. Nesta técnica, analise dos produtos indicam a participação do suposto intermediário na reação.

(v) Detecção de íons bromônio

•detectado por RMN de 13C e 1H;

(vi) Isolamento de um íon bromônio cristalino:

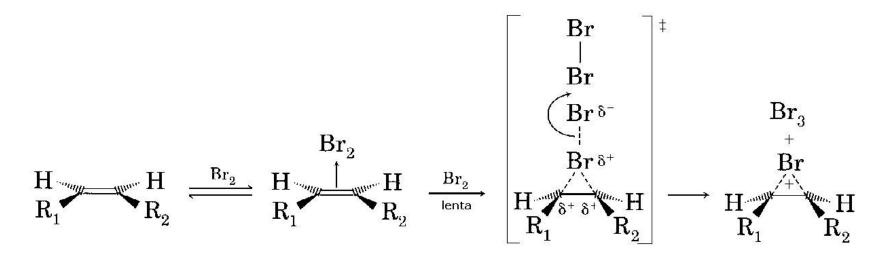
- •Wynberg, 1969: duas ligações C-Br diferentes; cerca de 10% mais compridas do que as ligações C-Br normais, Br₃- como contra-íon.
- •Brown 1991-1994: Confirmaram a **geometria simétrica** do anel de 3 membros contendo o bromo, a partir do raio X do sal com CF₃CO₂- como contra-íon.

6

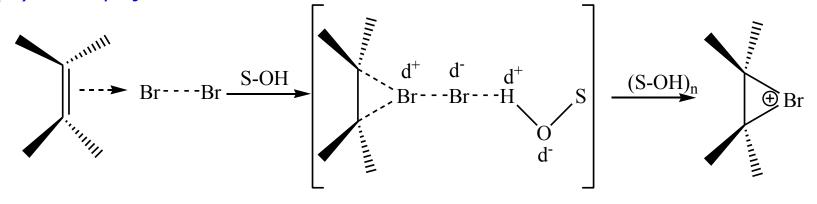
(vii) Teste para o envolvimento de carbocátion:

rearranjo

•Nesta reação não há um carbocátion intermediário, porque não se observa o produto de rearranjo.

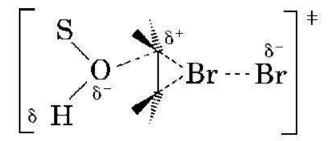

(viii) Envolvimento de um complexo de transferência de carga (CTC)

O espectro de UV de alcenos e Br₂ mostra uma banda nova, devido ao entre a ligação C=C (doador) e o Br₂ (receptor).


A participação deste CTC no caminha reacional, antes da formação de íon bromônio, foi comprovada pelo seguinte:

- a) há relação entre as velocidades de desaparecimento do CTC (detectado por UV) e a de formação do produto;
- b) algumas reações de bromação mostram *energia de ativação negativa* (como explicar isso?).

Exemplos da transformação do CTC em íon cíclico:


(ix) Participação Eletrofílica do Solvente:

Efeito Isotópico do Solvente: $k_H/k_D \sim 1,2$

 $+ Br^- n HO-S$

(x) Participação Nucleofílica do Solvente:

Estes mecanismos explicam os seguintes resultados?

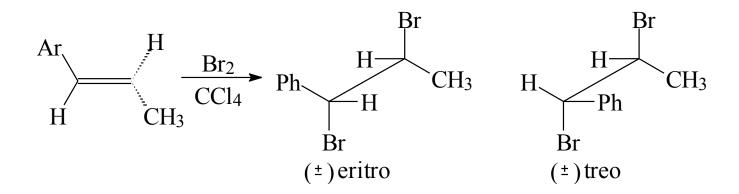
a) As equações cinéticas de bromação são complexas, ex:

$$v = [alceno] (k_2[Br_2] + k_3 [Br_2]^2 + k_{Br_3}^- [Br_3^-]);$$

b) A reação é muito sensível a propriedade do solvente.

(xi) Formação reversível do íon bromônio:

A formação do *trans*-estilbeno na reação da bromo-hidrina eritro indica que a fromação do íon bromônio deve ser reversível.


Representação do Íon Bromônio

•O íon bromônio é geralmente representado com a carga positiva no Br (fórmula de Lewis), porém, pode haver deslocalização da carga entre o Br e o C1/C2:

Bromônio versus carbocátion:

Formação de carbocátions na adição de bromo

•alcanos com substituintes arila: estabilização do carbocátion

$\mathbf{Ar} = \mathbf{C_6H_5}$	eritro	treo
trans	88%	12%
cis	17%	83%
$Ar = 4-OCH_3-C_6H_4$		
trans	63%	37%

com carbocátion mais estável, reação menos estéreo específica!!!

Orientação na Adição Eletrofílica: Adição de Bromo a Alcenos (em MeOH): Verificação da regra de Markovnikov

alceno	R ₁	R ₂	Rendi- mento	R ₁ R ₂ Br CH ₂	R ₁ R ₂ OCH ₃ C — CH ₂
etileno	Н	Н	38%	/	/
propeno	Me	Н	61%	50%	11%
2-metilpropeno	Me	Ме	85%	85%	0 13

Reatividade na Bromação

eteno < propeno < 2-buteno ~ isobuteno < 2-metil-2-buteno Correlação de Taft linear com: log $k_2 = -3,1 \Sigma \sigma^* + 7,0$ Correlação com soma dos valores de σ^* : $\rho^* = -3,1$

composto	reatividade relativa	
CH ₂ =CH ₂	1	
CH ₂ =CH-CH ₂ Br	0,3	
CH ₂ =CHBr	0,0003	
cis-CHCl=CHCl	1,0 10 ⁻⁷	
CHCI=CCI ₂	1,0 10 ⁻¹⁰	
CCl ₂ =CCl ₂	muito lento	

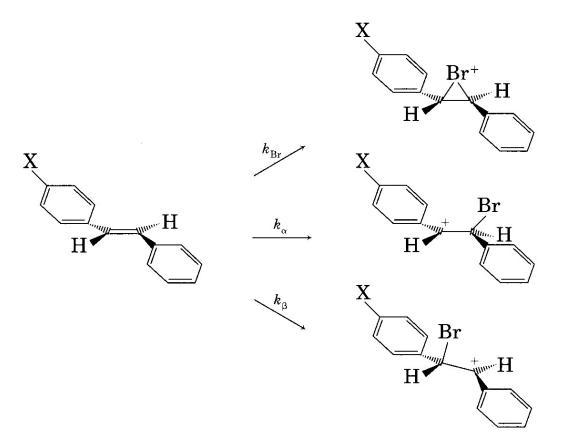
em HOAc, a 25 °C

Doadores de elétron aumentam a velocidade, independentemente da posição.

Aceptores de elétron diminuem a velocidade, efeito aditivo e depende da proximidade.

Estes resultados favorecem um íon bromônio ou um carbocátion aberto?

Esteroquímica da adição de Br₂ a estirenos

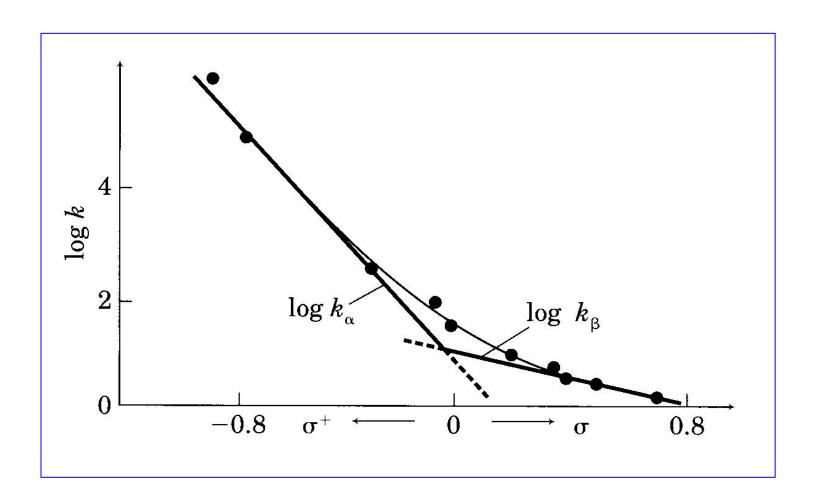

Reação de **trans-3-(4-metóxifenil)propeno** é menos estereoespecífico ainda, 63% eritero e 37% treo. Explicar.

Para a bromação de estirenos substituídos, log k correlaciona com σ^+ : $\rho^+ = -4.8$. {Solvólise de PhC(Me)₂Cl em 90% acetona aquosa: $\rho = -4.54$.} Esta reação ocorre pelo mecanismo de S_N1, *via* carbocátion.

Portanto, a bromação de estirenos envolve um carbocátion aberto como intermediário.

Reação de Estilbenos com Bromo

Diferentes Reações Paralelas


Velocidade global da reação $k_{obs} = k_{Br} + k_{\alpha} + k_{\beta}$

X forte doador: k_{obs} controlado pelo caminho k_{α} , k_{obs} correlaciona com σ^+ ;

X forte aceptor: o caminho importante é k_{β} , k_{obs} correlaciona com σ ;

X intermediário: o caminho *via* íon bromônio (k_{Br}) , k_{obs} correlaciona com σ .

Gráfico de Hammett para a bromação de estilbenos mono substituídos

Adição de Cloro

- •reação de alcenos com Cl₂ é semelhante a de Br₂ em termos de estereoquímica (97% *anti* com isômeros de 2-buteno);
- •Adição de cloro a eteno é mais exotérmica ($\Delta H^0 = -44$ kcal/mol) que a adição de bromo ($\Delta H^0 = 29$ kcal/mol);
- •formação intermediária de **íon clorônio**, e valores de ρ^* de Taft similares: $\rho^* = -2,9$ (adição de Cl_2) e -3,1 (adição de Br_2);
- diferença essencial é que na reação de Cl₂ com alcenos puros, ou em solventes não polares ocorre tambem substituição como reação competitiva;

Adição de cloro a trans-2-penteno em HOAc: estereospecífica ANTI

18

Formação do produto de substituição

$$H_3C$$
 CH_3
 CH_3

- Neste caso, o clorero age como base;
- •Esta reação não ocorre com bromo! Porque?

Adição de cloro em água

$$H_3C$$
 H
 CH_3
 H_2O
 H_3C
 H_3

19

Reação de ciclo-hexeno com cloro

Formação de 3 produtos:

- (i) sob N_2 , formação de **1**, **2** e **3** (2 : 1 : 0.6);
- (ii) na presença de O_2 , somente formação de $\mathbf{1}$ e $\mathbf{2}$ (3,5:1).

Mecanismo de formação de **2** e **3**? Papel de O₂ na inibição de formação de **3**?

Mecanismo para a formação de produto de substituição via íon clorônio.

$$H$$
 Cl_2
 H
 Cl_2
 Cl_2

Estereoquímica da Adição de Cloro

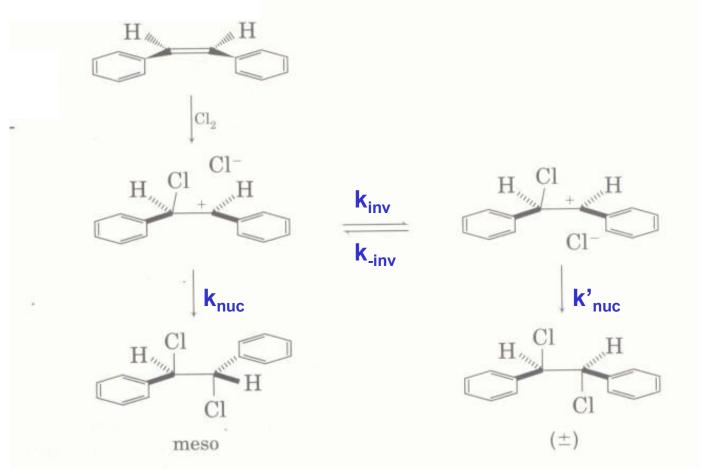
Adição de cloro via íon clorônio implica em estereoquímica anti.

Presença de grupo **fenila** deve ter o mesmo efeito sobre a estereoespecificidade da adição de cloro que na adição de bromo.

Estereoespecífica da adição de Cl₂ a cis- e trans-estilbeno:

Resultados Experimentais:

cis-estilbeno: mistura 9:1 de meso: racêmico (sin: anti = 9:1);


trans-estilbeno: mistura 1:2 de meso : racêmico (sin : anti = 2:1).

A adição deve ocorrer com envolvimento de carbocátion aberto e a adição **sin** é a preferencial. **Explicação??**

Adição de cloro a acenaftaleno: 100% de adição sin

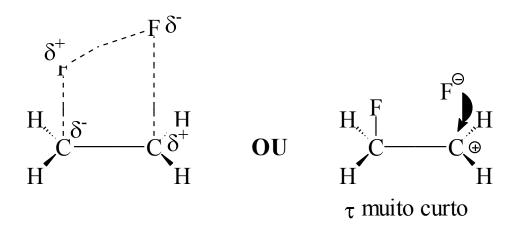
$$\begin{array}{c|c} & \text{Cl} & \text{Cl} \\ \hline & \text{Cl}_2 \\ \hline & \text{CCl}_4 \\ \end{array}$$

Mecanismo da adição de cloro a cis-estilbeno

Para a adição anti, o cloreto tem que passar para o outro lado da ligação C-C (k_{inv}), ou deve ocorrer rotação da ligação C-C (não mostrado);

Relação dos produtos depende da relação entre k_{inv} , k_{-inv} ; k_{nuc} ; k'_{nuc}

E o caso do acenaftaleno? Como ele se encaixa? Ele pode indicar o mecaniosmo?


Adição de Flúor

A adição de F₂ a ligação C=C não tem utilidade sintética.

A adição de flúor e dificultada porque a reação é bastante exotérmica (difícil controle),

A adição de flúor a alcenos é extremamente exotérmica e acompanhada por reações laterais;

Estereoquímica: adição SIN;

XeX₂ / HF usado como reagente de fluoração;

Adição de Iodo

A adição de I₂ a ligação C=C não tem utilidade sintética.

O produto de adição de iodo, o di-iodoalcano, é instável, sofrendo fácil eliminação de I_2 para o alceno.

Alceno $+ I_2$:

•reação muito pouco exotérmica e com entropia muito negativa

```
(\Delta H = -11 \text{ kcal/mol}; \Delta S = -32 \text{ e.u.}; \text{ na fase gasosa})
```

•aumento da temperatura desloca equilíbrio para esquerda;

Estireno $+ I_2$:

- produz di-iodo-estireno; filtrado a 0 °C;
- •a TA, decomposição em iodo e estireno.

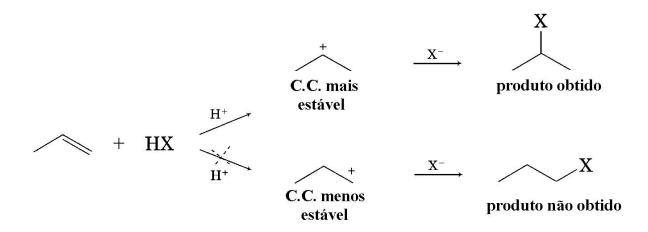
Adição radicalar:

- 2-buteno + I₂: com luz adição ANTI; em propano sob refluxo (- 42 °C);
- •proposto um radical cíclico com ponte de iodo como intermediário.

Adição de Compostos Inter-halogêneos

Compostos inter-halogêneo adicionam à alcenos.

Ordem de reatividade: $BrCl > Br_2 > ICl > IBr > I_2$.


A adição ocorre pelo polo positivo do dipolo, via íon cíclico, com estereoquímica **anti**, via a regra de Markovnikov.

$$\boldsymbol{\delta}^{^{+}} \operatorname{\mathbf{Br}} \mathbf{-\!\!\!\!\!-} \operatorname{\mathbf{Cl}}^{}$$

$$Me_{2}C = CH_{2} \xrightarrow{\stackrel{\delta^{+}}{Br} - \stackrel{\delta^{-}}{Cl}} Me_{2}\stackrel{\delta^{++}}{C} - \stackrel{\delta^{+}}{CH}_{2} \rightarrow Me_{2}C - CH_{2}$$

2. Adição de Ácidos Hidro-halogênios: HX

Normalmente, a adição de HX à alcenos segue a regra de Markovnikov, via a formação do carbocátion mais estável.

A estereoquímica é predominantemente **anti** e, para o mesmo alceno, a ordem de reatividade é HBr > HCl.

Evidências para a formação intermediária carbocátion:

- •a reação é mais rápida em solventes polares;
- ocorrência de rearranjos moleculares;
- dependendo da estabilidade do carbocátion, a adição pode ocorrer também no sentido anti-Markovnikov;

Ocorrência de rearranjo na adição de HCI

Adição de HBr a 3,3,3,trifluoropropeno: Adição anti-Markovnikov??

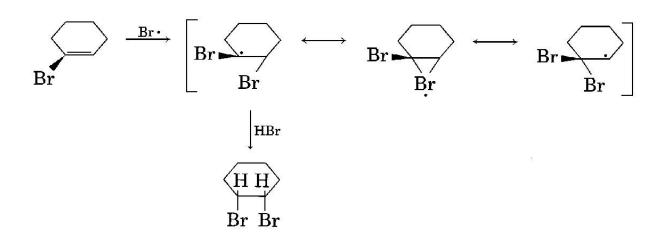
Reação ocorre somente em tubo selado a 100 °C na presença do AlCl₃

Equação cinética: v = k [alceno] [HX]ⁿ, onde n > 1, o que mostra que a adição é mais complexa que apresentada.

A regioseletividade de adição de HBr depende da *pureza dos reagentes*. Na presença de peróxidos, a adição é radicalar, anti-Markovnikov. Este efeito (de peróxidos) é observado *somente com HBr*, pois tem as duas etapas exotérmicas de propagação.

Adição Radicalar de HBr a Alcenos

∆H° (kcal/mol), das etapas de propagação 1 e 2 para adição radicalar de HX:


нх	Propagação 1	Propagação 2
HF	- 46	+ 36
HCI	-17	+ 4
HBr	-3	-11
HI	+ 12	-27

A base da adição anti-Markovnikov é a mesma para a adição iônica: a formação do intermediário mais estável, no caso o radical.

•ordem de adição é inversa, ou seja, Br e depois H.

A adição radicalar de HBr à 1-bromociclo-hexeno produz *cis*-1,2-dibromociclo-hexano; a adição radicalar de HBr à 1-metilciclo-hexeno produz cis-1-bromo-2-metilciclo-hexano. Tal estereoquímica indica que o radical intermediário é cíclico, semelhante ao íon bromônio.

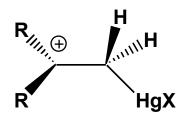
Mecanismo da adição radicalar de HBr para derivados de ciclo-hexeno

3. Hidratação

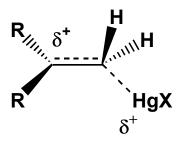
A hidratação de alcenos, catalisada por ácidos, é a reação inversa de eliminação de água de álcoois.

A reação é de 1ª ordem em [H+], tem efeito isotópico cinético (k_{H3O}^+ / k_{D3O}^+ = 2 - 4), as constantes de velocidade correlacionam com σ^+ , e tem valores de ρ^+ altos e negativos.

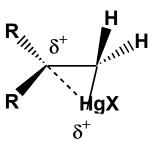
Oximercuração/Desmercuração

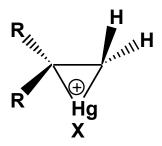

A sequência de reações produz ROH, sob condições brandas, sem participação de um carbocátion livre (vantagem sintética?),

A regioquímica da adição é no sentido Markovnikov.


Oximercuração/Desmercuração: Evitar rearranjo

$$H_2O$$
 OH


Intermediário da Reação: Carbocátion ou Íon 'Mercurínio'


carbocátion aberto

lon assimétrico com carga deslocalizada

Íon 'mercurínio' assimétrico

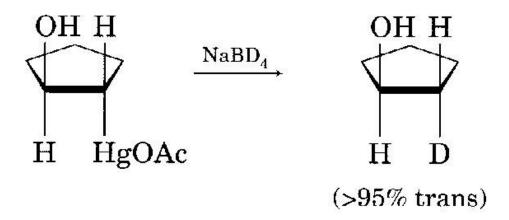
Íon 'mercurínio' simétrico

Cinética da reação de oximercuração

A reação ocorre em duas etapas, *formação rápida* de intermediário (provavelmente *íon mercurínio*), seguida por reação lenta de adição do solvente prótico, SOH. A equação cinética é ([*Int*] = constante):

$$k_{obs} = (k_1 k_2 / k_{-1}) [alceno] [HgX_2]$$

Em comparação com a bromação (*etapa lenta* formação de intermediário) a oximercuração é menos sensível ao efeito de substituentes.


Estereoquímica da reação de oximercuração

A reação de oximercuração é estereoespecífica.

Entretanto, a estereoespecificidade da reação de demercuração depende da estrutura do composto:

- (i) Alta estereospecificidade é obtida para compostos cíclicos,
- (ii) baixa estereospecificidade é obtida para alcenos lineares.

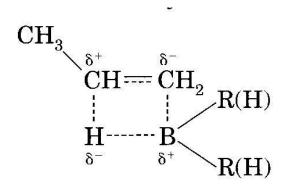
Assim, a reação de ciclopenteno produz álcool com adição 95% anti (caso i)

Estereoquímica da reação de oximercuração

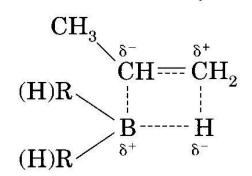
Enquanto a reação de *cis-* ou *trans-*2-buteno produz mistura 50:50 *eritero* e *treo-*deutero-2-butanol (caso ii), devido a rotação do radical produzido pela abstração de ·Hg-H.

Hidroboração / Oxidação

A hidroboração-oxidação é oferece rota estereoseletiva para hidratação da C=C com *orientação anti-Markovnikov*.


A reação ocorre em duas etapas: (i) hidroboração (adição de di-borano, B₂H₆ em éter ou THF), (ii) oxidação do produto por H₂O₂/OH⁻.

$$R$$
 $\xrightarrow{B_2H_6}$
 $\stackrel{\text{éter}}{\leftarrow}$
 R
 $\xrightarrow{\text{aq. HO}^-}$
 R
 OH


Estereoquímica da Hidroboração / Oxidação

Adição SIN, explicada pelo estado de transição abaixo

Estados de transição para adição de borano

E.T. favorável estericamente e eletronicamente

E.T. desfavorável estericamente e eletronicamente

- •ET à esquerda favorecido *eletronicamente* e *estericamente*;
- Boro age como eletrófilo e hidrogênio como nucleófilo (hidreto);
- Adição estereoespecífica SIN.

Mecanismo da Oxidação:

$$H_{2}O_{2} + OH^{-} \longrightarrow HO_{2}^{-} + H_{2}O$$

$$BR_{3} + HO_{2}^{-} \longrightarrow \begin{bmatrix} R \\ R - B - O - OH \\ R \end{bmatrix}$$

$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

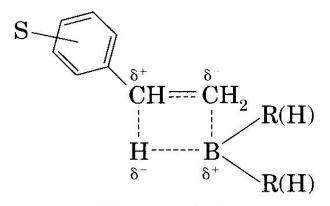
$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

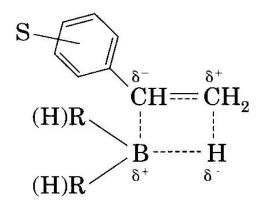
$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$


$$R - B - OR + OH^{-} \longrightarrow R$$

$$R - B - OR + OH^{-} \longrightarrow R$$


O passo chave é o *rearranjo* do borano hidro-peróxido: migração para oxigênio deficiente em elétron; A reação é estereoespecífica com retenção da configuração.

Adição de Borano a Derivados de Estireno

Estado de transição para a adição de Borano a Derivados de Estireno:

E.T. favorável estericamente Estabilidade eletrônica depende de S

E.T. desfavorável estericamente Estabilidade eletrônica depende de S

Adição de Borano a Derivados de Estireno

Substituintes doadores e aceptores de elétron no Ar levam a mesma relação de produtos:

Ar
$$C = CH_2$$
 $\xrightarrow{1. R_2BH}$ $Ar \xrightarrow{--}$ $C \xrightarrow{--}$ CH_2 $+ Ar \xrightarrow{---}$ $C \xrightarrow{---}$ CH_3 OH $> 97%$

Regioquímica definida principalmente por efeitos estéricos e não eletrônicos.

4. Hidroxilação e Epoxidação

4.1 Hidroxilação SIN com OsO₄ e KMnO₄:

Vários reagentes, OsO_4 , $KMnO_4$ e perácidos podem ser usados para preparação de diois, com diferentes estereoquímica. O primeiro reagente é caro e tóxico, entretanto pode ser usado em quantidade catalítica + H_2O_2 , que re-oxida o ácido ósmico para OsO_4 .

Adição SIN na Hidroxilação com OsO4:

$$Me$$
 H
 OsO_4
 Me
 H
 OsO_4
 Me
 H
 Me
 H

KMnO₄ produz diol com a mesma esteroquímica, e partindo do reagente com oxigênio marcado produz o diol marcado *nos dois OH:* intermediário semelhante ao com OsO₄. Porém, uso de permanganato leva, em muito os caso à clivagem da ligação C=C.

4.2 Hidroxilação ANTI com Perácidos via Epóxido:

Formação de Epóxidos na Reação de Alcenos com Perácidos

Abertura do Epóxido Catalisada por Ácido ou Base: Hidroxilação ANTI

5. Hidrogenação Catalítica

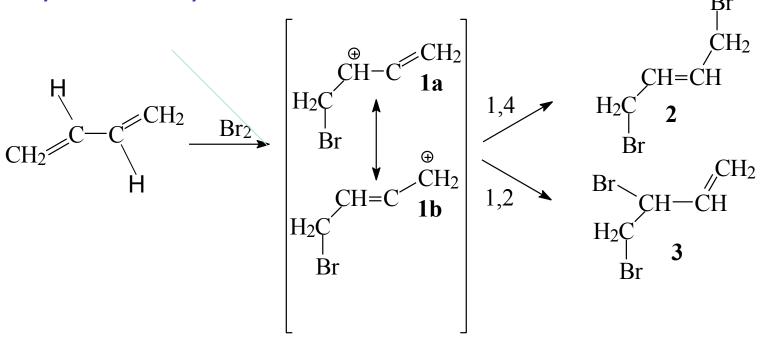
- •Catálise heterogênea por metais de transição (Ni, Pt, Pd, Ru, Rh, etc.)
- Adsorção do alceno (via ligação p) e do hidrogênio à superfície do metal;
- Alongamento das ligações C-C e H-H;

Adição é estereospecífica SIN:

Hidrogenação parcial de alcinos:

Catalisador de Lindlar: Pb sobre CaCO₃, envenenado com Pb(OAc)₂;

$$(CH_3)_3C \equiv CC(CH_3)_3 \xrightarrow{H_2} \xrightarrow{H} C = C$$


$$(CH_3)_3C \xrightarrow{EH_2} CC(CH_3)_3$$

Adição Eletrofílica a Dienos Conjugados

Dienos conjugados mais reativos que alcenos, porque?????

•Estabilização do dieno (conjugação) versus estabilização do intermediário.

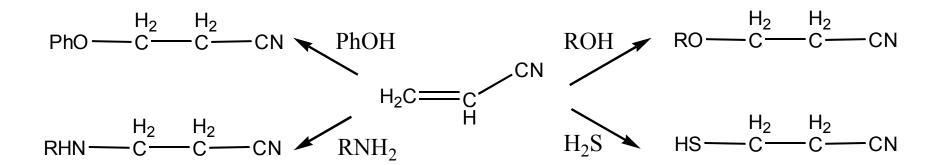
Adição 1,2 versus 1,4:

- •2 produto termodinâmico (dupla mais estável); 3 produto cinético;
- maior contribuição da estrutura 1a para o híbrido (carbocátion secundário);
 A T alta (ou tempos longos) o produto 2 é formado preferencialmente (equilíbrio termodinâmico).

Adição Nucleofílica a Ligações C=C

Normalmente C=C ricos em elétrons (nucleófilo) reage com eletrófilo; Alcenos com substituintes atraentes de elétrons, inibem adição eletrofílica, favorecendo adição nucleofílica.

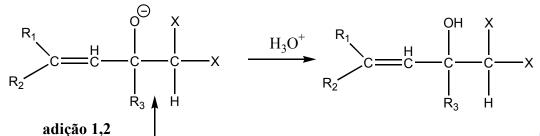
Grupos atraentes:

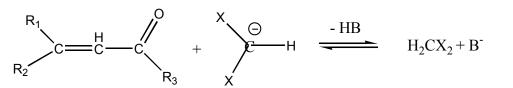

$$-C \stackrel{O}{\longleftarrow} -C \stackrel{O}{\longleftarrow} C \stackrel{O}{\longleftarrow} CN \quad NO_2 \quad S \stackrel{O}{\longleftarrow} SO_2R \quad F(Cl,Br)$$

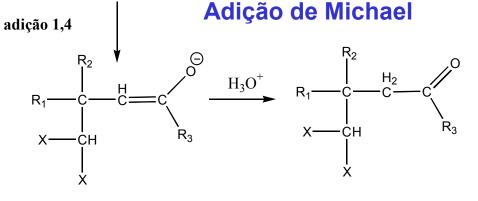
Orientação da adição

Formação do carbânion mais estável; catálise básica: formação do nucleófilo X-Estereoquímica da reação não clara

Importância sintética:


Cianoetilação




- Catálise básica;
- •Introdução de uma unidade de 3 carbonos;
- •Hidrólise de -CN (amida, ácido carboxílico).

Adição de Michael

Adição nucleofílica 1,4 a compostas carbonílicos α , β -insaturados e análogos:

R_1, R_2	H, alquila, arila
R_3	H, alquila, OR
X	COR, COOR, CN, etc

•Reagentes organo-metâlicos:

RLi, RMgX, R₂CuLi; (hard/soft)

R₂CuLi: adição 1,4; (soft)

•RLi, RMgX: adição 1,2 (hard).

•Produto 1,4 é mais estável: estabilidade da C=O;

•Importância do efeito estérico: volume de R₁ / R₂ versus R₃;