EXAME DE CAPACIDADE PARA INGRESSO NA PÓS-GRADUAÇÃO EM BIOQUÍMICA (IQ-USP)

JULHO-2023

- 1. Analise o heptapeptídeo, Ala-Cys-Asp-Val-Cys-Val-Ala que contém uma ponte de dissulfeto intracadeia.
 - a) Qual o pI deste peptídeo? Explique como chegou a esta conclusão.
 - b) Determine a carga líquida deste peptídeo em pH 5. Explique como chegou a esta conclusão.

A estrutura dos aminoácidos que compõem o heptapeptídeo são mostrados na Figura e os respectivos pKa's podem ser encontrados na Tabela.

Tabela - Valores de pK, dos aminoácidos

- "				
	pK ₁	pK ₂	pK _R	
Alanina	2,35	9,87	-	
Valina	2,29	9,74	-	
Cisteína	1,92	10,70	8,37	
Ácido aspártico	1,99	9,90	3,90	

 pK_1 e pK_2 são os pKas dos grupos α -carboxílicos e α -amino, respectivamente, e o pK_R refere-se ao pKa do grupo da R cadeia lateral do aminoácido.

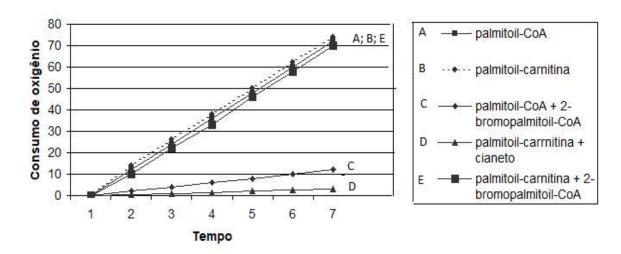
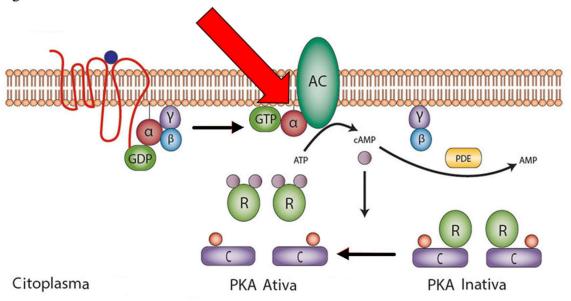
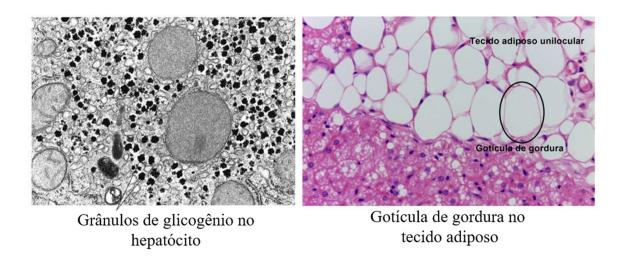

- A velocidade inicial (v₀) da reação catalisada por uma enzima, cuja cinética segue o
 modelo de Michaelis-Menten, foi medida com e sem inibidores e em diferentes
 concentrações de substratos.
 - a) Estime os valores de K_M e V_{max} em cada condição experimental. Explique como chegou a estes valores.
 - b) Que tipo de inibidor reversível deve ser o inibidor A e o inibidor B? Justifique.
 - c) Como cada inibidor deve interagir com a enzima e como isso explicaria os resultados obtidos?

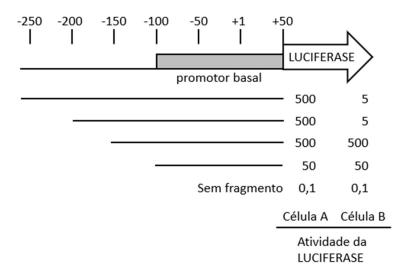
Tabela - Velocidade de reação catalisada por uma enzima em função da concentração na presença e na ausência de inibidores.


Substrato (mM)	Velocidade de reação sem inibidor (µmols/min)	Velocidade de reação com inibidor A (μmols/min)	Velocidade de reação com inibidor B (μmols/min)
10	18,1	12,3	10,7
16	21,4	15,8	13,2
30	29,2	21,2	18,5
50	36,8	30,4	21,9
80	41,6	35,8	24,1
120	42,3	42,5	25,5
150	42,5	43,1	25,1

- 3. Em experimentos com um extrato celular, mediu-se o consumo de oxigênio usandose diferentes substratos. Os resultados estão mostrados no gráfico abaixo (o consumo de oxigênio está apresentado em unidades arbitrárias).
- a. Qual é o possível local de atuação de 2-bromopalmitoil-CoA? Justificar.
- b. Por que não há consumo de oxigênio em presença de cianeto?
- c. Em qual (quais) dos cinco experimentos apresentados esteve ativo (Justifique):
 - c1 o ciclo de Lynen (β-oxidação de ácidos graxos)?
 - c2 o ciclo de Krebs?


Oxidação de substratos por mitocôndrias

4. Uma toxina hipotética, isolada de bactérias, provoca ativação da proteína indicada na Figura com uma seta vermelha.



a. Preveja os efeitos que a contaminação por esta bactéria provocaria nas biomoléculas de reserva nos tecidos indicados na Figura


b. Qual hormônio de mamífero tem ação semelhante à da toxina hipotética e em que condições fisiológicas seu efeito prevalece?

5. Suponha que você esteja estudando a regulação de um gene. Você sabe que o promotor basal deste gene está em um segmento localizado entre as posições -100 e +50. Para estudar a função deste promotor, você fez deleções 5' progressivas em fragmentos deste promotor e os ligou ao gene repórter LUCIFERASE. Em seguida, você transfectou estes fragmentos em dois tipos de célula. Os resultados podem ser observados na Figura.

- a. Existem múltiplas estratégias que podem ter sido usadas para se unir os fragmentos de promotor ao gene da *LUCIFERASE*. Quais enzimas podem ter sido utilizadas e como foram empregadas para se unir os fragmentos do promotor à *LUCIFERASE*?
- b. O que podemos concluir sobre a região entre -200 e -150 e a região entre -150 e 100? Justifique.

6. A Figura representa uma forquilha de replicação:

- a) Qual das fitas serve de molde para síntese da fita líder?
- b) Qual foi sintetizada primeiro, fita D ou E? Por quê?
- c) Que etapas precisam ser executadas para que o intervalo entre as fitas D e E seja fechado?
- d) De onde vem a energia para que a reação de polimerização possa prosseguir?