Paixão Group Electronic Tongue and Chemical Sensors Lab

Publications



(150) Silva-Neto, H. A.; de Lima, L. F.; Rocha, D. S.; Ataide, V. N.; Meloni, G. N.; Moro, G.; Raucci, A.; Cinti, S.; Paixão, T. R. L. C.; de Araujo, W. R.; et al. Recent achievements of greenness metrics on paper-based electrochemical (bio) sensors for environmental and clinical analysis. TrAC - Trends in Analytical Chemistry 2024, 174, Review. https://doi.org/10.1016/j.trac.2024.117675.
(149) Rocha, D. S.; Baldo, T. A.; Silva-Neto, H. A.; Duarte-Junior, G. F.; Bazílio, G. S.; Borges, C. L.; Parente-Rocha, J. A.; de Araujo, W. R.; de Siervo, A.; Paixão, T. L. R. C.; et al. Disposable and eco-friendly electrochemical immunosensor for rapid detection of SARS-CoV-2. Talanta 2024, 268, Article. https://doi.org/10.1016/j.talanta.2023.125337.
(148) Pradela Filho, L. A.; Paixão, T. R. L. C.; Nordin, G. P.; Woolley, A. T. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Analytical and Bioanalytical Chemistry 2024, 416 (9), 2031-2037, Article. https://doi.org/10.1007/s00216-023-04862-w.
(147) Gongoni, J. L. M.; Chumanov, G.; Paixão, T. R. L. C.; Garcia, C. D. Au-Modified Carbon Electrodes Produced by Laser Scribing for Electrochemical Analysis of Probiotic Activity. Analysis and Sensing 2024, 4 (1), Article. https://doi.org/10.1002/anse.202300056.
(146) Ferreira, B.; Arantes, I. V. S.; Saraiva, D. P. M.; Pradela-Filho, L. A.; Bertotti, M.; Paixão, T. R. L. C. Commercial ink-coated PVC: No longer abrading conventional PVC surfaces for electrode fabrication using pencil drawing. Microchemical Journal 2024, 198, Article. https://doi.org/10.1016/j.microc.2024.110149.
(145) Di-Oliveira, M.; Araújo, D. A. G.; Ramos, D. L. O.; Faria, L. V. D.; Rocha, R. G.; Sousa, R. M. F.; Richter, E. M.; Paixão, T. R. L. C.; Munoz, R. A. A. Sequential cyclic-square-wave voltammetric determination of sulfanilamide and ciprofloxacin in environment water samples using a 3D-printed electrochemical device. Electrochimica Acta 2024, 481, Article. https://doi.org/10.1016/j.electacta.2024.143945.
(144) Crapnell, R. D.; Arantes, I. V. S.; Camargo, J. R.; Bernalte, E.; Whittingham, M. J.; Janegitz, B. C.; Paixão, T. R. L. C.; Banks, C. E. Multi-walled carbon nanotubes/carbon black/rPLA for high-performance conductive additive manufacturing filament and the simultaneous detection of acetaminophen and phenylephrine. Microchimica Acta 2024, 191 (2), Article. https://doi.org/10.1007/s00604-023-06175-2.
(143) Blasques, R. V.; Camargo, J. R.; Veloso, W. B.; Meloni, G. N.; Fernandes, F. A.; Germinare, B. F.; Guterres e Silva, L. R.; de Siervo, A.; Paixão, T. R. L. C.; Janegitz, B. C. Green Fabrication and Analytical Application of Disposable Carbon Electrodes Made from Fallen Tree Leaves Using a CO2 Laser. ACS Sustainable Chemistry and Engineering 2024, 12 (8), 3061-3072, Article. https://doi.org/10.1021/acssuschemeng.3c06526.
(142) Veloso, W. B.; Paixão, T. R. L. C.; Meloni, G. N. 3D printed electrodes design and voltammetric response. Electrochimica Acta 2023, 449, Article. https://doi.org/10.1016/j.electacta.2023.142166.
(141) Veloso, W. B.; Ataide, V. N.; Rocha, D. P.; Nogueira, H. P.; de Siervo, A.; Angnes, L.; Muñoz, R. A. A.; Paixão, T. R. L. C. 3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Microchimica Acta 2023, 190 (2), Article. https://doi.org/10.1007/s00604-023-05648-8.
(140) Sousa, L. R.; Guinati, B. G. S.; Maciel, L. I. L.; Baldo, T. A.; Duarte, L. C.; Takeuchi, R. M.; Faria, R. C.; Vaz, B. G.; Paixão, T. R. L. C.; Coltro, W. K. T. Office paper and laser printing: a versatile and affordable approach for fabricating paper-based analytical devices with multimodal detection capabilities. Lab on a Chip 2023, 24 (3), 467-479, Article. https://doi.org/10.1039/d3lc00840a.
(139) Siqueira, G. P.; Araújo, D. A. G.; de Faria, L. V.; Ramos, D. L. O.; Matias, T. A.; Richter, E. M.; Paixão, T. R. L. C.; Muñoz, R. A. A. A novel 3D-printed graphite/polylactic acid sensor for the electrochemical determination of 2,4,6-trinitrotoluene residues in environmental waters. Chemosphere 2023, 340, Article. https://doi.org/10.1016/j.chemosphere.2023.139796.
(138) Silva-Neto, H. A.; Arantes, I. V. S.; Ferreira, A. L.; do Nascimento, G. H. M.; Meloni, G. N.; de Araujo, W. R.; Paixão, T. R. L. C.; Coltro, W. K. T. Recent advances on paper-based microfluidic devices for bioanalysis. TrAC - Trends in Analytical Chemistry 2023, 158, Review. https://doi.org/10.1016/j.trac.2022.116893.
(137) Rozendo, J.; Garcia, M. A. S.; Lima, S. L. S.; Tasić, N.; Emrem, B.; Fiorio, J. L.; Solorzano, G.; Dourado, A. H. B.; Gonçalves, L. M.; Paixão, T. R. L. C.; et al. How do gold-nanocrystal surface facets affect their electrocatalytic activities and the benzocaine-oxidation mechanism? Surfaces and Interfaces 2023, 41, Article. https://doi.org/10.1016/j.surfin.2023.103282.
(136) Pradela-Filho, L. A.; Veloso, W. B.; Medeiros, D. N.; Lins, R. S. O.; Ferreira, B.; Bertotti, M.; Paixão, T. R. L. C. Patterning (Electro)chemical Treatment-Free Electrodes with a 3D Printing Pen. Analytical Chemistry 2023, 95 (28), 10634-10643, Article. https://doi.org/10.1021/acs.analchem.3c01084.
(135) Pradela-Filho, L. A.; Veloso, W. B.; Arantes, I. V. S.; Gongoni, J. L. M.; de Farias, D. M.; Araujo, D. A. G.; Paixão, T. R. L. C. Paper-based analytical devices for point-of-need applications. Microchimica Acta 2023, 190 (5), Review. https://doi.org/10.1007/s00604-023-05764-5.
(134) Pradela-Filho, L. A.; Gongoni, J. L. M.; Arantes, I. V. S.; De Farias, D. M.; Paixão, T. R. L. C. Controlling the Inkjet Printing Process for Electrochemical (Bio)Sensors. Advanced Materials Technologies 2023, 8 (8), Article. https://doi.org/10.1002/admt.202201729.
(133) Negahdary, M.; Veloso, W. B.; Bacil, R. P.; Buoro, R. M.; Gutz, I. G. R.; Paixão, T. R. L. C.; do Lago, C. L.; Sakata, S. K.; Meloni, G. N.; França, M. C.; et al. Aptasensing of beta-amyloid (Aβ(1−42)) by a 3D-printed platform integrated with leaf-shaped gold nanodendrites. Sensors and Actuators B: Chemical 2023, 393, Article. https://doi.org/10.1016/j.snb.2023.134130.
(132) M. de Farias, D.; Pradela-Filho, L. A.; Arantes, I. V. S.; Gongoni, J. L. M.; Veloso, W. B.; Meloni, G. N.; Paixão, T. R. L. C. Sulfanilamide Electrochemical Sensor Using Phenolic Substrates and CO2 Laser Pyrolysis. ACS Applied Materials and Interfaces 2023, 15 (48), 56424-56432, Article. https://doi.org/10.1021/acsami.3c11462.
(131) Lopes, C. E. C.; de Faria, L. V.; Araújo, D. A. G.; Richter, E. M.; Paixão, T. R. L. C.; Dantas, L. M. F.; Muñoz, R. A. A.; da Silva, I. S. Lab-made 3D-printed electrochemical sensors for tetracycline determination. Talanta 2023, 259, Article. https://doi.org/10.1016/j.talanta.2023.124536.
(130) Gongoni, J. L. M.; Filho, L. A. P.; De Farias, D. M.; Arantes, I. V. S.; Paixão, T. R. L. C. Modulating the Electrochemical Response of Eco-Friendly Laser-Pyrolyzed Paper Sensors Applied to Nitrite Determination. ChemElectroChem 2023, 10 (1), Article. https://doi.org/10.1002/celc.202201018.
(129) Crapnell, R. D.; Arantes, I. V. S.; Whittingham, M. J.; Sigley, E.; Kalinke, C.; Janegitz, B. C.; Bonacin, J. A.; Paixão, T. R. L. C.; Banks, C. E. Utilising bio-based plasticiser castor oil and recycled PLA for the production of conductive additive manufacturing feedstock and detection of bisphenol A. Green Chemistry 2023, 25 (14), 5591-5600, Article. https://doi.org/10.1039/d3gc01700a.
(128) Correia, P. R. M.; Kinchin, I. M.; Paixão, T. R. L. C. Threshold Concepts as a Missing Piece Needed to Frame Teaching in Analytical Chemistry. Journal of Chemical Education 2023, 100 (4), 1419-1425, Review. https://doi.org/10.1021/acs.jchemed.2c00376.
(127) Ataide, V. N.; Pradela-Filho, L. A.; Ameku, W. A.; Negahdary, M.; Oliveira, T. G.; Santos, B. G.; Paixão, T. R. L. C.; Angnes, L. Paper-based electrochemical biosensors for the diagnosis of viral diseases. Microchimica Acta 2023, 190 (7), Review. https://doi.org/10.1007/s00604-023-05856-2.
(126) Ataide, V. N.; Pradela Filho, L. A.; Guinati, B. G. S.; Moreira, N. S.; Gonçalves, J. D.; Ribeiro, C. M. G.; Grasseschi, D.; Coltro, W. K. T.; Salles, M. O.; Paixão, T. R. L. C. Combining chemometrics and paper-based analytical devices for sensing: An overview. TrAC - Trends in Analytical Chemistry 2023, 164, Review. https://doi.org/10.1016/j.trac.2023.117091.
(125) Arantes, I. V. S.; Crapnell, R. D.; Bernalte, E.; Whittingham, M. J.; Paixão, T. R. L. C.; Banks, C. E. Mixed Graphite/Carbon Black Recycled PLA Conductive Additive Manufacturing Filament for the Electrochemical Detection of Oxalate. Analytical Chemistry 2023, 95 (40), 15086-15093, Article. https://doi.org/10.1021/acs.analchem.3c03193.
(124) Arantes, I. V. S.; Ataide, V. N.; Ameku, W. A.; Gongoni, J. L. M.; Selva, J. S. G.; Nogueira, H. P.; Bertotti, M.; Paixão, T. R. L. C. Laser-induced fabrication of gold nanoparticles onto paper substrates and their application on paper-based electroanalytical devices. Sensors and Diagnostics 2023, 2 (1), 111-121, Article. https://doi.org/10.1039/d2sd00176d.
(123) Stefano, J. S.; Orzari, L. O.; Silva-Neto, H. A.; de Ataíde, V. N.; Mendes, L. F.; Coltro, W. K. T.; Longo Cesar Paixão, T. R.; Janegitz, B. C. Different approaches for fabrication of low-cost electrochemical sensors. Current Opinion in Electrochemistry 2022, 32, Review. https://doi.org/10.1016/j.coelec.2021.100893.
(122) Sposito, H. G. M.; Lobato, A.; Tasić, N.; Maldaner, A. O.; Paixão, T. R. L. C.; Gonçalves, L. M. Swift electrochemical sensing of diltiazem employing highly-selective molecularly-imprinted 3-amino-4-hydroxybenzoic acid. Journal of Electroanalytical Chemistry 2022, 911, Article. https://doi.org/10.1016/j.jelechem.2022.116207.
(121) Silva-Neto, H. A.; Rocha, D. S.; Pradela-Filho, L. A.; Paixão, T. R. L. C.; Coltro, W. K. T. (Bio)electrodes on paper platforms as simple and portable analytical tools for bioanalytical applications. In Advances in Bioelectrochemistry, Vol. 5; 2022; pp 181-202. https://link.springer.com/chapter/10.1007/978-3-031-10832-7_6.
(120) Mendes, L. F.; Pradela-Filho, L. A.; Paixão, T. R. L. C. Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchemical Journal 2022, 182, Article. https://doi.org/10.1016/j.microc.2022.107893.
(119) Bossard, B.; Grothe, R. A.; Martins, A. B.; Lobato, A.; Tasić, N.; Paixão, T. R. L. C.; Gonçalves, L. M. Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer. Monatshefte fur Chemie 2022, 153 (12), 1129-1135, Article. https://doi.org/10.1007/s00706-022-02997-7.
(118) Ataide, V. N.; Arantes, I. V. S.; Mendes, L. F.; Rocha, D. S.; Baldo, T. A.; Coltro, W. K. T.; Paixão, T. R. L. C. Review - A Pencil Drawing Overview: From Graphite to Electrochemical Sensors/Biosensors Applications. Journal of the Electrochemical Society 2022, 169 (4), Review. https://doi.org/10.1149/1945-7111/ac68a0.
(117) Arantes, I. V. S.; Paixão, T. R. L. C. Couple batch-injection analysis and microfluidic paper-based analytical device: A simple and disposable alternative to conventional BIA apparatus. Talanta 2022, 240, Article. https://doi.org/10.1016/j.talanta.2021.123201.
(116) Ameku, W. A.; Negahdary, M.; Lima, I. S.; Santos, B. G.; Oliveira, T. G.; Paixão, T. R. L. C.; Angnes, L. Laser-Scribed Graphene-Based Electrochemical Sensors: A Review. Chemosensors 2022, 10 (12), Review. https://doi.org/10.3390/chemosensors10120505.
(115) Tasić, N.; Cavalcante, L.; Deffune, E.; Góes, M. S.; Paixão, T. R. L. C.; Gonçalves, L. M. Probeless and label-free impedimetric biosensing of D-dimer using gold nanoparticles conjugated with dihexadecylphosphate on screen-printed carbon electrodes. Electrochimica Acta 2021, 397, Article. https://doi.org/10.1016/j.electacta.2021.139244.
(114) Rocha, D. P.; Ataide, V. N.; de Siervo, A.; Gonçalves, J. M.; Muñoz, R. A. A.; Paixão, T. R. L. C.; Angnes, L. Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chemical Engineering Journal 2021, 425, Article. https://doi.org/10.1016/j.cej.2021.130594.
(113) Paixão, T. R. L. C.; Garcia, C. D. Chemistry of paper—properties, modification strategies, and uses in bioanalytical chemistry. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics, 2021; pp 15-39. https://doi.org/10.1016/B978-0-12-820534-1.00008-6.
(112) Grothe, R. A.; Lobato, A.; Mounssef, B.; Tasić, N.; Braga, A. A. C.; Maldaner, A. O.; Aldous, L.; Paixão, T. R. L. C.; Gonçalves, L. M. Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst 2021, 146 (5), 1747-1759, Article. https://doi.org/10.1039/d0an02274h.
(111) Freitas, R. C.; Orzari, L. O.; Ferreira, L. M. C.; Paixão, T. R. L. C.; Coltro, W. K. T.; Vicentini, F. C.; Janegitz, B. C. Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. Journal of Electroanalytical Chemistry 2021, 897, Article. https://doi.org/10.1016/j.jelechem.2021.115550.
(110) de Araujo, W. R.; Paixão, T. R. L. C. Introduction remarks for paper-based analytical devices and timeline. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics, 2021; pp 1-13. https://doi.org/10.1016/B978-0-12-820534-1.00004-9.
(109) de Araujo, W. R.; Paixão, T. R. L. C. Paper-based Analytical Devices for Chemical Analysis and Diagnostics; 2021. https://doi.org/10.1016/C2019-0-01488-4.
(108) Baldo, T. A.; De Lima, L. F.; Mendes, L. F.; De Araujo, W. R.; Paixão, T. R. L. C.; Coltro, W. K. T. Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials 2021, 3 (1), 68-100, Review. https://doi.org/10.1021/acsaelm.0c00735.
(107) Ataide, V. N.; Rocha, D. P.; de Siervo, A.; Paixão, T. R. L. C.; Muñoz, R. A. A.; Angnes, L. Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Microchimica Acta 2021, 188 (11), Article. https://doi.org/10.1007/s00604-021-05007-5.
(106) Ataide, V. N.; Ameku, W. A.; Bacil, R. P.; Angnes, L.; De Araujo, W. R.; Paixão, T. R. L. C. Enhanced performance of pencil-drawn paper-based electrodes by laser-scribing treatment. RSC Advances 2021, 11 (3), 1644-1653, Article. https://doi.org/10.1039/d0ra08874a.
(105) Arantes, I. V. S.; Mendes, L. F.; Ataide, V. N.; de Araujo, W. R.; Paixão, T. R. L. C. Conclusions, challenges, and next steps. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics, 2021; pp 259-274. https://doi.org/10.1016/B978-0-12-820534-1.00010-4.
(104) Arantes, I. V. S.; Gongoni, J. L. M.; Mendes, L. F.; de Ataide, V. N.; Ameku, W. A.; Garcia, P. T.; de Araujo, W. R.; Paixão, T. R. L. C. Electrochemical paper-based analytical devices. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics, 2021; pp 81-116. https://doi.org/10.1016/B978-0-12-820534-1.00011-6.
(103) Ameku, W. A.; Gonçalves, J. M.; Ataide, V. N.; Ferreira Santos, M. S.; Gutz, I. G. R.; Araki, K.; Paixão, T. R. L. C. Combined Colorimetric and Electrochemical Measurement Paper-Based Device for Chemometric Proof-of-Concept Analysis of Cocaine Samples. ACS Omega 2021, 6 (1), 594-605, Article. https://doi.org/10.1021/acsomega.0c05077.
(102) Ameku, W. A.; Ataide, V. N.; Costa, E. T.; Gomes, L. R.; Napoleão-Pêgo, P.; Provance, D. W.; Paixão, T. R. L. C.; Salles, M. O.; De-Simone, S. G. A pencil-lead immunosensor for the rapid electrochemical measurement of anti-diphtheria toxin antibodies. Biosensors 2021, 11 (12), Article. https://doi.org/10.3390/bios11120489.
(101) Tasić, N.; Paixão, T. R. L. C.; Gonçalves, L. M. Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta 2020, 207, Review. https://doi.org/10.1016/j.talanta.2019.120270.
(100) Tasić, N.; Bezerra Martins, A.; Yifei, X.; Sousa Góes, M.; Martín-Yerga, D.; Mao, L.; Paixão, T. R. L. C.; Moreira Gonçalves, L. Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices. Electrochemistry Communications 2020, 121, Article. https://doi.org/10.1016/j.elecom.2020.106872.
(99) Paixão, T. R. L. C. Measuring Electrochemical Surface Area of Nanomaterials versus the Randles−Ševčík Equation. ChemElectroChem 2020, 7 (16), 3414-3415, Article. https://doi.org/10.1002/celc.202000633.
(98) Mendes, L. F.; de Siervo, A.; Reis de Araujo, W.; Longo Cesar Paixão, T. R. Reagentless fabrication of a porous graphene-like electrochemical device from phenolic paper using laser-scribing. Carbon 2020, 159, 110-118, Article. https://doi.org/10.1016/j.carbon.2019.12.016.
(97) e Silva, R. F.; Longo Cesar Paixão, T. R.; Der Torossian Torres, M.; de Araujo, W. R. Simple and inexpensive electrochemical paper-based analytical device for sensitive detection of Pseudomonas aeruginosa. Sensors and Actuators, B: Chemical 2020, 308, Article. https://doi.org/10.1016/j.snb.2020.127669.
(96) Dignani, M. T.; Bioni, T. A.; Paixão, T. R. L. C.; El Seoud, O. A. Cellulose Dissolution in Mixtures of Ionic Liquids and Dimethyl Sulfoxide: A Quantitative Assessment of the Relative Importance of Temperature and Composition of the Binary Solvent. Molecules 2020, 25 (24), Article. https://doi.org/10.3390/MOLECULES25245975.
(95) Clark, K. M.; Skrajewski, L.; Benavidez, T. E.; Mendes, L. F.; Bastos, E. L.; Dörr, F. A.; Sachdeva, R.; Ogale, A. A.; Paixão, T. R. L. C.; Garcia, C. D. Fluorescent patterning of paper through laser engraving. Soft Matter 2020, 16 (33), 7659-7666, Article. https://doi.org/10.1039/d0sm00988a.
(94) Ataide, V. N.; Mendes, L. F.; Gama, L. I. L. M.; De Araujo, W. R.; Paixaõ, T. R. L. C. Electrochemical paper-based analytical devices: Ten years of development. Analytical Methods 2020, 12 (8), 1030-1054, Review. https://doi.org/10.1039/c9ay02350j.
(93) Aguiar, J. G.; Kinchin, I. M.; Correia, P. R. M.; Infante-Malachias, M. E.; Paixão, T. R. L. C. Uncovering and comparing academics’ views of teaching using the pedagogic frailty model as a tool: a case study in science education. Educational Research 2020, 62 (4), 434-454, Article. https://doi.org/10.1080/00131881.2020.1831941.
(92) Silva, T. G.; Paixao, T. R. L. C. Development of a colorimetric array to discriminate cutting agents in seized cocaine samples. In ISOEN 2019 - 18th International Symposium on Olfaction and Electronic Nose, Proceedings, 2019. https://doi.org/10.1109/ISOEN.2019.8823260.
(91) Paixão, T. R. L. C.; Salles, M. O.; Coltro, W. K. T. CHAPTER 1: Introduction to Chemical Analysis Focusing on Forensic Chemical Sensing and Detection. In RSC Detection Science, Vol. 2019-January; 2019; pp 1-6. https://doi.org/10.1039/9781788016117-00001.
(90) Paixão, T. R. L. C.; Salles, M. O.; Coltro, W. K. T. CHAPTER 12: Future Challenges and Point-of-view. In RSC Detection Science, Vol. 2019-January; 2019; pp 275-280. https://doi.org/10.1039/9781788016117-00275.
(89) Paixão, T. R. L. C. Portable analytical techniques for forensic applications. Brazilian Journal of Analytical Chemistry 2019, 6 (22), 8-9, Note. https://doi.org/10.30744/brjac.2179-3425.point-of-view-trlcpaixao.
(88) Mendes, L. F.; Souza e Silva, Â. R.; Bacil, R. P.; Serrano, S. H. P.; Angnes, L.; Paixão, T. R. L. C.; de Araujo, W. R. Forensic electrochemistry: Electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochimica Acta 2019, 295, 726-734, Article. https://doi.org/10.1016/j.electacta.2018.10.120.
(87) Gama, M. R.; Melchert, W. R.; Paixão, T. R. L. C.; Rocha, F. R. P. An overview of the brazilian contributions to green analytical chemistry. Anais da Academia Brasileira de Ciencias 2019, 91, Article. https://doi.org/10.1590/0001-3765201920180294.
(86) Ferreira, P. C.; Ataíde, V. N.; Silva Chagas, C. L.; Angnes, L.; Tomazelli Coltro, W. K.; Longo Cesar Paixão, T. R.; Reis de Araujo, W. Wearable electrochemical sensors for forensic and clinical applications. TrAC - Trends in Analytical Chemistry 2019, 119, Review. https://doi.org/10.1016/j.trac.2019.115622.
(85) Dias, A. A.; Chagas, C. L. S.; Silva-Neto, H. D. A.; Lobo-Junior, E. O.; Sgobbi, L. F.; De Araujo, W. R.; Paixaõ, T. R. L. C.; Coltro, W. K. T. Environmentally Friendly Manufacturing of Flexible Graphite Electrodes for a Wearable Device Monitoring Zinc in Sweat. ACS Applied Materials and Interfaces 2019, 11 (43), 39484-39492, Article. https://doi.org/10.1021/acsami.9b12797.
(84) de Castro, L. F.; de Freitas, S. V.; Duarte, L. C.; de Souza, J. A. C.; Paixão, T. R. L. C.; Coltro, W. K. T. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Analytical and Bioanalytical Chemistry 2019, 411 (19), 4919-4928, Article. https://doi.org/10.1007/s00216-019-01788-0.
(83) Cardoso, R. M.; Castro, S. V. F.; Silva, M. N. T.; Lima, A. P.; Santana, M. H. P.; Nossol, E.; Silva, R. A. B.; Richter, E. M.; Paixão, T. R. L. C.; Muñoz, R. A. A. 3D-printed flexible device combining sampling and detection of explosives. Sensors and Actuators, B: Chemical 2019, 292, 308-313, Article. https://doi.org/10.1016/j.snb.2019.04.126.
(82) Bezerra Martins, A.; Lobato, A.; Tasić, N.; Perez-Sanz, F. J.; Vidinha, P.; Paixão, T. R. L. C.; Moreira Gonçalves, L. Laser-pyrolyzed electrochemical paper-based analytical sensor for sulphite analysis. Electrochemistry Communications 2019, 107, Article. https://doi.org/10.1016/j.elecom.2019.106541.
(81) Ameku, W. A.; De Araujo, W. R.; Rangel, C. J.; Ando, R. A.; Paixão, T. R. L. C. Gold Nanoparticle Paper-Based Dual-Detection Device for Forensics Applications. ACS Applied Nano Materials 2019, 2 (9), 5460-5468, Article. https://doi.org/10.1021/acsanm.9b01057.
(80) Santos, M. S. F.; Ameku, W. A.; Gutz, I. G. R.; Paixão, T. R. L. C. Gold leaf: From gilding to the fabrication of disposable, wearable and low-cost electrodes. Talanta 2018, 179, 507-511, Article. https://doi.org/10.1016/j.talanta.2017.11.021.
(79) Pereira De Oliveira, L.; Rocha, D. P.; Reis De Araujo, W.; Abarza Muñoz, R. A.; Longo Cesar Paixão, T. R.; Oliveira Salles, M. Forensics in hand: New trends in forensic devices (2013-2017). Analytical Methods 2018, 10 (43), 5135-5163, Review. https://doi.org/10.1039/c8ay01389f.
(78) Moreira, R. C.; Costa, B. M. C.; Marra, M. C.; Santana, M. H. P.; Maldaner, A. O.; Botelho, É. D.; Paixão, T. R. L. C.; Richter, E. M.; Coltro, W. K. T. Screening of seized cocaine samples using electrophoresis microchips with integrated contactless conductivity detection. Electrophoresis 2018, 39 (17), 2188-2194, Article. https://doi.org/10.1002/elps.201800137.
(77) Dias, A. A.; Cardoso, T. M. G.; Chagas, C. L. S.; Oliveira, V. X. G.; Munoz, R. A. A.; Henry, C. S.; Santana, M. H. P.; Paixão, T. R. L. C.; Coltro, W. K. T. Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. Electroanalysis 2018, 30 (10), 2250-2257, Article. https://doi.org/10.1002/elan.201800308.
(76) de Araujo, W. R.; Cardoso, T. M. G.; da Rocha, R. G.; Santana, M. H. P.; Muñoz, R. A. A.; Richter, E. M.; Paixão, T. R. L. C.; Coltro, W. K. T. Portable analytical platforms for forensic chemistry: A review. Analytica Chimica Acta 2018, 1034, 1-21, Review. https://doi.org/10.1016/j.aca.2018.06.014.
(75) da Silva, G. O.; de Araujo, W. R.; Paixão, T. R. L. C. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples. Talanta 2018, 176, 674-678, Article. https://doi.org/10.1016/j.talanta.2017.08.082.
(74) Silva, T. G.; Paixao, T. R. L. C. Development of an electronic tongue to distinguish cutting agents in cocaine samples to understand drug trafficking. In ISOEN 2017 - ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, Proceedings, 2017. https://doi.org/10.1109/ISOEN.2017.7968925.
(73) Selva, T. M. G.; de Araujo, W. R.; Bacil, R. P.; Paixão, T. R. L. C. Study of Electrochemical Oxidation and Quantification of the Pesticide Pirimicarb Using a Boron-Doped Diamond Electrode. Electrochimica Acta 2017, 246, 588-596, Article. https://doi.org/10.1016/j.electacta.2017.06.051.
(72) Selva, T. M. G.; Araujo, W. R.; Paixao, T. R. L. C. Electrochemical sensor for discrimination of carbamates and organophosphorus pesticides. In ISOEN 2017 - ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, Proceedings, 2017. https://doi.org/10.1109/ISOEN.2017.7968922.
(71) Lima, L. C.; Paixão, T. R. L. C.; Nomura, C. S.; Gaubeur, I. Combination of Dispersive Liquid-Liquid Microextraction and Emulsion Breaking for the Determination of Cu(II) and Pb(II) in Biodiesel and Oil Samples. Energy and Fuels 2017, 31 (9), 9491-9497, Article. https://doi.org/10.1021/acs.energyfuels.7b01430.
(70) Garcia Cardozo, C.; Melo Cardoso, R.; Matheus Guimarães Selva, T.; Evaristo de Carvalho, A.; Torres Pio dos Santos, W.; Regis Longo Cesar Paixão, T.; Amorim Bezerra da Silva, R. Batch Injection Analysis-Multiple Pulse Amperometric Fingerprint: A Simple Approach for Fast On-site Screening of Drugs. Electroanalysis 2017, 29 (12), 2847-2854, Article. https://doi.org/10.1002/elan.201700520.
(69) Freitas, J. M.; Ramos, D. L. O.; Sousa, R. M. F.; Paixão, T. R. L. C.; Santana, M. H. P.; Muñoz, R. A. A.; Richter, E. M. A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sensors and Actuators, B: Chemical 2017, 243, 557-565, Article. https://doi.org/10.1016/j.snb.2016.12.024.
(68) Fioroto, A. M.; Kelmer, G. A. R.; Albuquerque, L. G. R.; César Paixão, T. R. L.; Oliveira, P. V. Microwave-assisted digestion with a single reaction chamber for mineral fertilizer analysis by inductively coupled plasma optical emission spectrometry. Spectroscopy Letters 2017, 50 (10), 550-556, Article. https://doi.org/10.1080/00387010.2017.1390766.
(67) de Araujo, W. R.; Frasson, C. M. R.; Ameku, W. A.; Silva, J. R.; Angnes, L.; Paixão, T. R. L. C. Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices. Angewandte Chemie - International Edition 2017, 56 (47), 15113-15117, Article. https://doi.org/10.1002/anie.201708527.
(66) Bueno, L.; de Araujo, W. R.; Paixão, T. R. L. C. Point of care (POC) medical biosensors for cancer detection. In Medical Biosensors for Point of Care (POC) Applications, 2017; pp 183-201. https://doi.org/10.1016/B978-0-08-100072-4.00008-3.
(65) Albuquerque, L. G. R.; Fioroto, A. M.; Paixão, T. R. L. C.; Oliveira, P. V. Evaluation of Multi-Mixtures of Acids for the Sample Preparation of Organic Soil Amendments for Multi-Element Determination by ICP OES. Communications in Soil Science and Plant Analysis 2017, 48 (18), 2210-2217, Article. https://doi.org/10.1080/00103624.2017.1408818.
(64) Silva, T. G.; De Araujo, W. R.; Muñoz, R. A. A.; Richter, E. M.; Santana, M. H. P.; Coltro, W. K. T.; Paixão, T. R. L. C. Simple and Sensitive Paper-Based Device Coupling Electrochemical Sample Pretreatment and Colorimetric Detection. Analytical Chemistry 2016, 88 (10), 5145-5151, Article. https://doi.org/10.1021/acs.analchem.6b00072.
(63) Selva, T. M. G.; Paixão, T. R. L. C. Electrochemical quantification of propoxur using a boron-doped diamond electrode. Diamond and Related Materials 2016, 66, 113-118, Article. https://doi.org/10.1016/j.diamond.2016.03.027.
(62) Selva, T. M. G.; Ferreira, T. L.; Paixão, T. R. L. C. Information extraction techniques in chemical sensing. In Materials for Chemical Sensing, 2016; pp 7-27. https://link.springer.com/chapter/10.1007/978-3-319-47835-7_2.
(61) Selva, T. M. G.; Da Paixão, T. R. L. C. Boron-doped diamond as a sensor for the classification of carbamate pesticides using a chemometric approach. New Journal of Chemistry 2016, 40 (3), 2514-2520, Article. https://doi.org/10.1039/c5nj03524d.
(60) Salles, M. O.; Araujo, W. R.; Paixão, T. R. L. C. Development of a molecularly imprinted modified electrode to evaluate phenacetin based on the preconcentration of acetaminophen. Journal of the Brazilian Chemical Society 2016, 27 (1), 54-61, Article. https://doi.org/10.5935/0103-5053.20150240.
(59) Paixão, T. R. L. C.; Reddy, S. M. Materials for chemical sensing; 2016. https://doi.org/10.1007/978-3-319-47835-7.
(58) Paixão, T. R. L. C.; Reddy, S. M. Preface. Materials for Chemical Sensing 2016, vi-viii, Editorial. https://doi.org/10.1007/978-3-319-47835-7.
(57) Maldaner, A. O.; Botelho, É. D.; Zacca, J. J.; Melo, R. C. A.; Costa, J. L.; Zancanaro, I.; Oliveira, C. S. L.; Kasakoff, L. B.; Paixão, T. R. L. C. Chemical profiling of street cocaine from different brazilian regions. Journal of the Brazilian Chemical Society 2016, 27 (4), 719-726, Article. https://doi.org/10.5935/0103-5053.20150321.
(56) De Araujo, W. R.; Reddy, S. M.; Paixão, T. R. L. C. Introduction of materials used in chemical sensors. In Materials for Chemical Sensing, 2016; pp 1-5. https://link.springer.com/chapter/10.1007/978-3-319-47835-7_1.
(55) Silva, T. G.; Salles, M. O.; Paixão, T. R. L. C. Investigation of the use of glassy carbon electrode modified with ruthenium hexacyanoferrate for detection of procaine. Quimica Nova 2015, 38 (1), 85-90, Article. https://doi.org/10.5935/0100-4042.20140286.
(54) Nazayan, R.; Reddy, S. M.; Paixâo, T. R. L. C. Preface. Materials Research Society Symposium Proceedings 2015, 1763, Editorial. https://doi.org/10.1557/opl.2015.135.
(53) Kim, J.; Imani, S.; de Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. R. L. C.; Mercier, P. P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics 2015, 74, 1061-1068, Article. https://doi.org/10.1016/j.bios.2015.07.039.
(52) Kim, J.; De Araujo, W. R.; Samek, I. A.; Bandodkar, A. J.; Jia, W.; Brunetti, B.; Paixão, T. R. L. C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochemistry Communications 2015, 51, 41-45, Article. https://doi.org/10.1016/j.elecom.2014.11.024.
(51) Garcia, S.; Gerondi, F.; Paixão, T. R. L. C.; Arruda, M. A. Z.; Gaubeur, I. Cadmium and lead determination in freshwater and hemodialysis solutions by thermospray flame furnace atomic absorption spectrometry following cloud point extraction. Journal of the Brazilian Chemical Society 2015, 26 (3), 490-497, Article. https://doi.org/10.5935/0103-5053.20150001.
(50) de Araujo, W. R.; Maldaner, A. O.; Costa, J. L.; Paixão, T. R. L. C. Development of an electroanalytical method for the quantification of aminopyrine in seized cocaine samples. Microchemical Journal 2015, 121, 213-218, Article. https://doi.org/10.1016/j.microc.2015.03.012.
(49) Bueno, L.; Meloni, G. N.; Reddy, S. M.; Paixão, T. R. L. C. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines. RSC Advances 2015, 5 (26), 20148-20154, Article. https://doi.org/10.1039/c5ra01822f.
(48) Bueno, L.; Cottell, A.; Reddy, S. M.; Paixão, T. R. L. C. Coupling dye-integrated polymeric membranes with smartphone detection to classify bacteria. RSC Advances 2015, 5 (119), 97962-97965, Article. https://doi.org/10.1039/c5ra19874g.
(47) Salles, M. O.; Paixão, T. R. L. C. Application of pattern recognition techniques in the development of electronic tongues. RSC Detection Science 2014, 2014-January (3), 197-229, Article. https://doi.org/10.1039/9781849737074-00197.
(46) Salles, M. O.; Meloni, G. N.; De Araujo, W. R.; Paixão, T. R. L. C. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Analytical Methods 2014, 6 (7), 2047-2052, Article. https://doi.org/10.1039/c3ay41727a.
(45) De Araujo, W. R.; Paixão, T. R. L. C. Use of copper electrode for melamine quantification in milk. Electrochimica Acta 2014, 117, 379-384, Article. https://doi.org/10.1016/j.electacta.2013.11.160.
(44) Bueno, L.; El-Sharif, H. F.; Salles, M. O.; Boehm, R. D.; Narayan, R. J.; Paixão, T. R. L. C.; Reddy, S. M. MIP-based electrochemical protein profiling. Sensors and Actuators, B: Chemical 2014, 204, 88-95, Article. https://doi.org/10.1016/j.snb.2014.07.100.
(43) Bueno, L.; de Araujo, W. R.; Salles, M. O.; Kussuda, M. Y.; Paixão, T. R. L. C. Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors 2014, 2 (4), 251-266, Article. https://doi.org/10.3390/chemosensors2040251.
(42) Junqueira, J. R. C.; De Araujo, W. R.; Salles, M. O.; Paixão, T. R. L. C. Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector. Talanta 2013, 104, 162-168, Article. https://doi.org/10.1016/j.talanta.2012.11.036.
(41) Da Silva, I. S.; De Araujo, W. R.; Paixão, T. R. L. C.; Angnes, L. Direct nitrate sensing in water using an array of copper-microelectrodes from flat flexible cables. Sensors and Actuators, B: Chemical 2013, 188, 94-98, Article. https://doi.org/10.1016/j.snb.2013.06.094.
(40) Salles, M. O.; Bertotti, M.; Paixão, T. R. L. C. Use of a gold microelectrode for discrimination of gunshot residues. Sensors and Actuators, B: Chemical 2012, 166-167, 848-852, Article. https://doi.org/10.1016/j.snb.2012.02.097.
(39) Maruta, A. H.; Paixão, T. R. L. C. Flow injection analysis of free glycerol in biodiesel using a copper electrode as an amperometric detector. Fuel 2012, 91 (1), 187-191, Article. https://doi.org/10.1016/j.fuel.2011.06.071.
(38) Lima, A. S.; Salles, M. O.; Ferreira, T. L.; Paixão, T. R. L. C.; Bertotti, M. Scanning electrochemical microscopy investigation of nitrate reduction at activated copper cathodes in acidic medium. Electrochimica Acta 2012, 78, 446-451, Article. https://doi.org/10.1016/j.electacta.2012.06.075.
(37) De Araújo, W. R.; Salles, M. O.; Paixão, T. R. L. C. Development of an enzymeless electroanalytical method for the indirect detection of creatinine in urine samples. Sensors and Actuators, B: Chemical 2012, 173, 847-851, Article. https://doi.org/10.1016/j.snb.2012.07.114.
(36) Dantas, L. M. F.; DeSouza, A. P. R.; Castro, P. S.; Paixão, T. R. L. C.; Bertotti, M. SECM Studies on the Electrocatalytic Oxidation of Glycerol at Copper Electrodes in Alkaline Medium. Electroanalysis 2012, 24 (8), 1778-1782, Article. https://doi.org/10.1002/elan.201200144.
(35) Peña, R. C.; Gamboa, J. C. M.; Bertotti, M.; Paixão, T. R. L. C. Studies on the electrocatalytic reduction of hydrogen peroxide on a glassy carbon electrode modified with a ruthenium oxide hexacyanoferrate film. International Journal of Electrochemical Science 2011, 6 (2), 394-403, Article. http://www.electrochemsci.org/papers/vol6/6020394.pdf.
(34) Novakowski, W.; Bertotti, M.; Paixão, T. R. L. C. Use of copper and gold electrodes as sensitive elements for fabrication of an electronic tongue: Discrimination of wines and whiskies. Microchemical Journal 2011, 99 (1), 145-151, Article. https://doi.org/10.1016/j.microc.2011.04.012.
(33) Naozuka, J.; da Veiga, M. A. M. S.; Richter, E. M.; Paixão, T. R. L. C.; Angnes, L.; Oliveira, P. V. Use of Metals and Anion Species with Chemometrics Tools for Classification of Unprocessed and Processed Coconut Waters. Food Analytical Methods 2011, 4 (1), 49-56, Article. https://doi.org/10.1007/s12161-010-9124-x.
(32) de Araújo, W. R.; Paixão, T. R. L. C. Amperometric detection of ranitidine using glassy carbon modified with ruthenium oxide hexacyanoferrate adapted in a flow injection system. Electroanalysis 2011, 23 (11), 2549-2554, Article. https://doi.org/10.1002/elan.201100102.
(31) Bueno, L.; Paixão, T. R. L. C. A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water. Talanta 2011, 87 (1), 210-215, Article. https://doi.org/10.1016/j.talanta.2011.09.064.
(30) Assumpção, M. H. M. T.; De Souza, R. F. B.; Rascio, D. C.; Silva, J. C. M.; Calegaro, M. L.; Gaubeur, I.; Paixão, T. R. L. C.; Hammer, P.; Lanza, M. R. V.; Santos, M. C. A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 2011, 49 (8), 2842-2851, Article. https://doi.org/10.1016/j.carbon.2011.03.014.
(29) Matos, I. O.; Ferreira, T. L.; Paixão, T. R. L. C.; Lima, A. S.; Bertotti, M.; Alves, W. A. Approaches for multicopper oxidases in the design of electrochemical sensors for analytical applications. Electrochimica Acta 2010, 55 (18), 5223-5229, Article. https://doi.org/10.1016/j.electacta.2010.04.049.
(28) Gamboa, J. C. M.; Peña, R. C.; Paixão, T. R. L. C.; Lima, A. S.; Bertotti, M. Activated Copper Cathodes as Sensors for Nitrite Analysis. Electroanalysis 2010, 22 (22), 2627-2632, Article. https://doi.org/10.1002/elan.201000318.
(27) Peña, R. C.; Gamboa, J. C. M.; Paixão, T. R. L. C.; Bertotti, M. Flow injection amperometric determination of hydrogen peroxide in household commercial products with a ruthenium oxide hexacyanoferrate modified electrode. Microchimica Acta 2009, 166 (3-4), 277-281, Article. https://doi.org/10.1007/s00604-009-0196-5.
(26) Paixão, T. R. L. C.; Bertotti, M. Methods for fabrication of microelectrodes towards detection in microenvironments. Quimica Nova 2009, 32 (5), 1306-1314, Article. https://doi.org/10.1590/S0100-40422009000500037.
(25) Paixão, T. R. L. C.; Bertotti, M. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sensors and Actuators, B: Chemical 2009, 137 (1), 266-273, Article. https://doi.org/10.1016/j.snb.2008.10.045.
(24) Gamboa, J. C. M.; Peña, R. C.; Paixão, T. R. L. C.; Bertotti, M. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 2009, 80 (2), 581-585, Article. https://doi.org/10.1016/j.talanta.2009.07.028.
(23) Paixão, T. R. L. C.; Bertotti, M. Studies on the kinetics of ascorbate oxidation at a ruthenium oxide hexacyanoferrate modified electrode towards the detection at microenvironments. Electrochemistry Communications 2008, 10 (8), 1180-1183, Article. https://doi.org/10.1016/j.elecom.2008.05.040.
(22) Paixão, T. R. L. C.; Bertotti, M. FIA determination of ascorbic acid at low potential using a ruthenium oxide hexacyanoferrate modified carbon electrode. Journal of Pharmaceutical and Biomedical Analysis 2008, 46 (3), 528-533, Article. https://doi.org/10.1016/j.jpba.2007.10.033.
(21) Paixão, T. R. L. C.; Bertotti, M. Ruthenium oxide hexacyanoferrate modified electrode for hydrogen peroxide detection. Electroanalysis 2008, 20 (15), 1671-1677, Article. https://doi.org/10.1002/elan.200804231.
(20) Paixão, T. R. L. C.; Barbosa, L. F.; Carrì, M. T.; Medeiros, M. H. G.; Bertotti, M. Continuous monitoring of ascorbate transport through neuroblastoma cells with a ruthenium oxide hexacyanoferrate modified microelectrode. Analyst 2008, 133 (11), 1605-1610, Article. https://doi.org/10.1039/b805868g.
(19) Salles, M. O.; Paixão, T. R. L. C.; Bertotti, M. Hydrogen peroxide monitoring in photo-Fenton reactions by using a metal hexacyanoferrate modified electrode. International Journal of Electrochemical Science 2007, 2 (3), 248-256, Article. https://doi.org/10.1016/S1452-3981(23)17070-2.
(18) Pedrosa, V. A.; Paixão, T. R. L. C.; Freire, R. S.; Bertotti, M. Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. Journal of Electroanalytical Chemistry 2007, 602 (2), 149-155, Article. https://doi.org/10.1016/j.jelechem.2006.12.011.
(17) Paixão, T. R. L. C.; Garcia, C. C. M.; Medeiros, M. H. G.; Bertotti, M. Flow injection amperometric detection of 2′-deoxyguanosine at a ruthenium oxide hexacyanoferrate modified electrode. Analytical Chemistry 2007, 79 (14), 5392-5398, Article. https://doi.org/10.1021/ac070490e.
(16) Paixão, T. R. L. C.; Cardoso, J. L.; Bertotti, M. Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode. Talanta 2007, 71 (1), 186-191, Article. https://doi.org/10.1016/j.talanta.2006.03.040.
(15) Paixão, T. R. L. C.; Cardoso, J. L.; Bertotti, M. The use of a copper microelectrode to measure the ethanol content in gasohol samples. Fuel 2007, 86 (7-8), 1185-1191, Article. https://doi.org/10.1016/j.fuel.2006.09.024.
(14) Paixão, T. R. L. C.; Bertotti, M. Electrocatalytic oxidation of deoxyguanosine on a glassy carbon electrode modified with a ruthenium oxide hexacyanoferrate film. Electrochimica Acta 2007, 52 (5), 2181-2188, Article. https://doi.org/10.1016/j.electacta.2006.08.035.
(13) Ferreira, T. L.; Paixão, T. R. L. C.; Richter, E. M.; El Seoud, O. A.; Bertotti, M. Use of microdevices to determine the diffusion coefficient of electrochemically generated species: Application to binary solvent mixtures and micellar solutions. Journal of Physical Chemistry B 2007, 111 (43), 12478-12484, Article. https://doi.org/10.1021/jp075878s.
(12) Paixão, T. R. L. C.; Richter, E. M.; Brito-Neto, J. G. A.; Bertotti, M. Fabrication of a new generator-collector electrochemical micro-device: Characterization and applications. Electrochemistry Communications 2006, 8 (1), 9-14, Article. https://doi.org/10.1016/j.elecom.2005.10.024.
(11) Paixão, T. R. L. C.; Richter, E. M.; Brito-Neto, J. G. A.; Bertotti, M. The use of a new twin-electrode thin-layer cell to the study of homogeneous processes coupled to electrode reactions. Journal of Electroanalytical Chemistry 2006, 596 (2), 101-108, Article. https://doi.org/10.1016/j.jelechem.2006.07.007.
(10) Paixão, T. R. L. C.; Ponzio, E. A.; Torresi, R. M.; Bertotti, M. EQCM behavior of copper anodes in alkaline medium and characterization of the electrocatalysis of ethanol oxidation by Cu(III). Journal of the Brazilian Chemical Society 2006, 17 (2), 374-381, Article. https://doi.org/10.1590/S0103-50532006000200023.
(9) Paixão, T. R. L. C.; Lowinsohn, D.; Bertotti, M. Use of an electrochemically etched platinum microelectrode for ascorbic acid mapping in oranges. Journal of Agricultural and Food Chemistry 2006, 54 (8), 3072-3077, Article. https://doi.org/10.1021/jf052874g.
(8) Lowinsohn, D.; Peres, H. E. M.; Kosminsky, L.; Paixão, T. R. L. C.; Ferreira, T. L.; Ramirez-Fernandez, F. J.; Bertotti, M. Design and fabrication of a microelectrode array for iodate quantification in small sample volumes. Sensors and Actuators, B: Chemical 2006, 113 (1), 80-87, Article. https://doi.org/10.1016/j.snb.2005.02.024.
(7) Paixão, T. R. L. C.; Bertotti, M. Development of a breath alcohol sensor using a copper electrode in an alkaline medium. Journal of Electroanalytical Chemistry 2004, 571 (1), 101-109, Article. https://doi.org/10.1016/j.jelechem.2004.04.015.
(6) Paixão, T. R. L. C.; Matos, R. C.; Bertotti, M. Development of a Dual-Band Amperometric Detector for Determination of Ascorbic Acid and Glucose. Electroanalysis 2003, 15 (23-24), 1884-1889, Article. https://doi.org/10.1002/elan.200302773.
(5) Paixão, T. R. L. C.; Matos, R. C.; Bertotti, M. Design and characterisation of a thin-layered dual-band electrochemical cell. Electrochimica Acta 2003, 48 (6), 691-698, Article. https://doi.org/10.1016/S0013-4686(02)00738-7.
(4) Paixão, T. R. L. C.; Matos, R. C.; Bertotti, M. Diffusion layer titration of dipyrone in pharmaceuticals at a dual-band electrochemical cell. Talanta 2003, 61 (5), 725-732, Article. https://doi.org/10.1016/S0039-9140(03)00334-5.
(3) Paixão, T. R. L. C.; Kosminsky, L.; Bertotti, M. Use of electrochemically pretreated glassy carbon electrodes as pH sensors in potentiometric titrations. Sensors and Actuators, B: Chemical 2002, 87 (1), 41-46, Article. https://doi.org/10.1016/S0925-4005(02)00201-0.
(2) Paixão, T. R. L. C.; Corbo, D.; Bertotti, M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium. Analytica Chimica Acta 2002, 472 (1-2), 123-131, Article. https://doi.org/10.1016/S0003-2670(02)00942-X.
(1) Rocha, J. R. C.; Kosminsky, L.; Paixão, T. R. L. C.; Bertotti, M. Anodic oxidation of nitrite at a molybdenum oxide layer. Electroanalysis 2001, 13 (2), 155-160, Article. https://doi.org/10.1002/1521-4109(200102)13:2.